

ALL YOU NEED FOR EMC TESTING

THE COMPLETE PRODUCT RANGE

INNOVATIVE EQUIPMENT FOR EMC TESTING AND MEASURING

EMCTESTING EMIMEASURING

THE FULL RANGE OF EM TEST: SOLUTIONS FOR ALL INDUSTRIAL SECTORS

ABOUT EM TEST	The EMC company	pages 4 – 5	Company
	The operation concept	pages 6 – 7	Concept
SIMULATORS	Automotive	pages 8–15	Automotive
	7 Telecom	pages 16–25	Telecom
	Industry	pages 26–39	Broadcast
	Kedical		Residential
	Residential		Industry Medical Residential Broadcast
	Proadcast		Industry
	Components & safety	pages 40 – 49	Components
	Military	pages 50 – 53	Military Aircraft
			Military
	Accessories	pages 54–60	Accessories
SERVICES	Seminars & workshops		
	Testing laboratory		EM TEST Services
	Service & support		EM TES
	Calibration laboratories & Software	pages 61 – 63	

THE EMC COMPANY

ELECTROMAGNETIC COMPATIBILITY INNOVATIVE TECHNOLOGY FOR EMC TESTING AND MEASURING

Any electronic or electrical device is part of a complex environment, heavily charged with conducted and radiated interference. Every electronic or electrical device is required to operate as intended in this environment without generating electromagnetic disturbances affecting other devices in its vicinity. A wide range of standards and directives regulate both the susceptibility as well as the maximum permissible emission level for each device. For you as a manufacturer both aspects need to be carefully examined and considered from the very early stages of development to obtain a high-quality product in terms of electromagnetic compatibility. EMTEST offers outstanding expertise in EMC. Our solutions and know-how in testing the susceptibility and measuring emissions are recognised worldwide. EMTEST is the leading manufacturer of high-class, fully compliance EMC testing and measurement equipment for the electronics industry in the automotive, telecom, medical, industrial electronics, avionics and military sectors.

Standards provide a driving force in the EMC business and form the framework for any manufacturer of electronic products and systems, protecting and safeguarding the environment from unnecessary electromagnetic interference. Standards are vital in this sector and test equipment manufacturers make a valuable contribution in highlighting technical aspects and practical applications for the equipment specified in the standards. This leads to more application-oriented standards, to the direct benefit of the user. EMTEST experts are members of national and international research groups and standards committees.

In this way we contribute towards adaptive and practical standards. Consequently, we guarantee that the technical specifications are integrated in our products and testing procedures are interpreted according to the relevant standards. We thereby anticipate future developments of standards for the benefit of our customers. Concept

Automotive

Telecom

Industry | Medical | Residential | Broadcast

Components

NOT ONLY DO WE MANUFACTURE AND SUPPLY TEST EQUIPMENT WE ALSO PROVIDE COMPLETE SOLUTIONS, e.g.: > FULL COMPLIANCE WITH CURRENT REQUIREMENTS AND ADAPTABILITY TO FUTURE DEVELOPMENTS > ACCESSORIES FOR EASY AND COMPLIANT TEST SET-UP INSTALLATIONS > USER-FRIENDLY TEST ROUTINES, LIBRARIES OF STANDARDS AND TEST REPORT GENERATION

THE OPERATION CONCEPT THE BASIS FOR VERSATILE AND MULTIPLE APPLICATIONS

OUTSTANDING EASE OF OPERATION

Cursor keys and rotary knob ensure maximum user-friendliness operation of the simulator.

THE FUNCTION KEYS

Parameters and complete test routines are selected via function keys. Comprehensive navigation makes operation as easy as possible. Service and self-check routines enable the user to verify the generator.

CLEAR DISPLAY

Menus and parameters are clearly arranged in the LCD display for quick and accurate programming of tests.

GPIB AND USB INTERFACES FAIL1 AND FAIL2

Every generator is equipped with both GPIB and USB interfaces for remote control. Fail1 and Fail2 inputs are implemented for DUT monitoring purposes.

Company

Automotive

Telecom

Industry | Medical | Residential | Broadcast

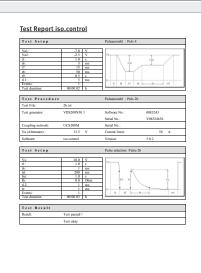
Components

Military | Aircraft

Accessories

EM TEST Services

A CLOSER LOOK AT THE SOFTWARE EVERYTHING IS THERE, EVERYTHING IS POSSIBLE


EASY SELECTION OF PREDEFINED NORMS AND PRODUCTS

🔨 em tes				lodes
/v enites	-		📥 to Devices	d to Standards
		Standard Test Select		tandards
		Select a standard test	5 1 50 YOUT 11070 10	
Preview		List View Tree View	Ford ES-XW7T-1A278-AC	Select Standard
Name : 150 7637-2 (2004) - Pulse 2b - Level		Name		pplications
3+4 (12/)		- Automotive	3 V system	2 V system
		- Aud	J v system	
Phenomen : Voltageprofile		BMW		V system
Type : Segment		Case New Holland		ulses
Duration : 2,504 s		Class DainlerChrysler		1000 C
Channel: 1		DIN DIN	CI 230	CI 210-1-1
Events : 1		+ EN	Cl 260 - Pulse A	Cl 210-1-2 < 1kHz
		+ PAW (First Automotive Works)	CI 260 - Pulse B	CI 210-1-2 > 1kHz
0		+ Pat		
5 "		Ford	Cl 260 - Pulse C	W CI 210-2-1
		General Notors	CI 260 - Pulse D	W CI 210-2-2
		Hyundai / Ka	Cl 260 - Pulse E	W CI 210-2-3
0 i LOCITE LOCITE LOCATE LEGATE DESAT		⇒ 150 ⇒ 150 7637-2 (2004) - 12V System		
Torr[1]		- ISO 7637-2 (2004) - L2V System	Cl 260 - Pulse F	Cl 220 - Pulse D
		Level 3+4	CI 270 - Test 1	CI 220 - Pulse E
II.	IT	A Pulse 4	CI 270 - Test 2	Cl 220 - Pulse F
		 ISO 7637-2 (2004) - 24V System 		The second s
		 ISO 16750-2 (Rev.2, 2006) - 12V System 	CI 270 - Test 3	📐 Cl 220 - Pulse G
		ISO 16750-2 (Rev. 2, 2006) - 24V System		
		ISO/WD 16790-2 (Rev. 3, Draft 2006) - 12V System		
		 ISO/WD 16750-2 (Rev. 3, Draft 2006) - 24V System ISO 21848.4 (2008) 		
		aso		
		John Deere		
		Mazda		
		Hercedes		
		Mitsubshi		
		E Nistan		
		Porsche		
		Pieggio PSA (Peugeot-Citroen)		
		+ Renault		
		+ SAE		unctions
		. Smart	Link Generator	A Easy Link
		+ Toyota		Casy Link 6
		Volvo		
~		Vokswagen	🕂 Open Link File 📄 Open Rep	👌 Open Test File 🚦

PRESENTATION OF THE RESULTS AS AN WELL ARRANGED TEST REPORT

TEST REPO	рт		
IESI KEPU	<u>KI</u>		
Report No .:	16728		
Date of test:	November-04-2008, 10:36		
Tester:	Mr. Abed		
Customer:	ABC		
File:	test.lik		
Standard:	ISO 7637-2		
Application:	Power supply		
Ambient Temperature:	22		
Humidity:	50 %		
	50 % 96 kPa		
Humidity:			
Hamidity: Pressure:			
Hamidity: Pressare: Test Result	96kPa		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hamidity: Pressare: Test Result	96 kPa Test passed 1		
Hensidhy: Pressar: Text Result Roult:	961Pa Test passed ! Test skay		
Hamidity: Pressare: Test Result	961Pa Test passed ! Test skay	(Signahur)	
Hensidhy: Pressar: Text Result Roult:	961Pa Test passed ! Test skay	(Signature)	

Accessories				Serial No.		
Oscilloscope				119987		
Datalogger				737882		
Absorbing clamp				6777		
Test Informatio						
Pulse selection : Pulse 3b			Test co	mpleted		
Pulse selection : Pulse 4			Test co	mpleted		
Pulse selection : Pulse 2b			Test co	mpleted		
Test Procedure			Pulse selection: Puls	e 3b		
Test file:	3b.tst					
Test generator:	UCS200M		Software No .:	0073490		
			Serial No .:	V0897847256		
Va (Alternator):	13.5	v	Current limit:	15 A		
Software:	iso.control		Version:	5.0.2		
Test Setup			Pulse selection: Pulse	: 3b		
V£	+100	v	: n :			
1:	10	kHz	9/10			
H:	10	ms				
15: Ir:	90	ms ns				
td:	100	115		u r i		
Ri	50	Ohm	VVV.			
Coupling:	Battery		1			
Test duration:	1	m	4			
Test Procedure	•		Pulsauswahl : Puls 4			
Test File:	4 tot		1			
Test generator:	VDS200NS0	1	Software No :	0083243		
			Serial No.:	V08324656		
Coupling network:	UC\$200M		Serial No.:	100044030		
Vb (Battery):	12.0	v	Current limit:	15 A		
vo (nanery): Software:	iso.control		Version:	50.2		

,

AUTOMOTIVE

OVERVIEW	OVERVIEW						
Application	Battery Simulation	Transients	Switching Transients	Conducted Immunity	Radiated Immunity	Transient Emission	Electrostatic Discharge
Products	VDS 200Nx AutoWave	UCS 200N LD 200N LD 200Sx	PFS 200Nx RCB 200	CWS 500N2 CWS 500N3	CWS 500N2 CWS 500N3	BS 200B AutoWave	dito ESD 30N
Standards	ISO 16750 Manufacturer	ISO 7637 Manufacturer	Manufacturer	ISO 11452-X Manufacturer	ISO 11452-X Manufacturer	ISO 7637 Manufacturer	ISO 10605 Manufacturer

BATTERY SIMULATION

The VDS 200N series is used to simulate the various battery supply waveforms recommended by international standards and car manufacturer standards. The wide range of manufacturer requirements make this an extremely important area, which is covered by the VDS 200N series.

Additionally, the VDS 200N series serves as a powerful DC voltage supply for the DUT during tests with automotive transients.

AutoWave is used for the following applications:

- > Generation of all kinds of voltage profile via software
- > Replay of imported data or plot files, record & play
- > Recording voltage variations in the real vehicle
- Replaying the measured data via a suitable
 DC source or amplifier
- > Analysis of the recorded voltages and currents
- > Export of measured data to other software tools

VDS 200N

Battery supply simulator and DC voltage source

ISO 7637-2, ISO 16750, manufacturer specifications

- 16 bit resolution, 40 GByte hard disk memory
- > Simultaneous record & play functio

ISO 7637, vehicle manufacturer specification

TECHNICAL DATA (OVERVIE	w) 🔽 🔽 🚾 🖬
Voltage range	0 V – 60 V with 0.1 V steps
VDS 200N15	I = 0 A - 15 A cont.
VDS 200N30	I = 0 A - 30 A cont.
Inrush current	I = 70 A for 500 ms
VDS 200N50	I = 0 A - 50 A cont.
Inrush current	I = 100 A for 500 ms
VDS 200N100	I = 0 A - 100 A cont.
Inrush current	l = 150 A for 500 ms
VDS 200N150	I = 0 A - 150 A cont.
VDS 200N200	I = 0 A - 200 A cont.
VDS 200N200.1	I = 0 A - 200 A cont.
Inrush current	l = 1,000 A for 100 ms
Preprogrammed pulses	2b, 4, sinewave, sinewave sweep, etc.
$Zq = \langle 10 m\Omega \rangle$	

TECHNICAL DATA (OVERVIEW)	M w V w M
Wave generation	
2 output channels standard	
4 output channel optional	
Output ±10 V/50 Ω	
Resolution 16 bit	
DC – 50 kHz	
Sample rate 500 kHz	
Waveform segments	
DC voltage	
Sine wave	
Sine wave sweep	
Sine ramped	
Square wave	
Triangular wave	
Saw-tooth wave	
Ramp up/Ramp down	
Exponential wave	
Wave record	
2-channel measuring input	
±5 V, 10 V, 20 V, 50 V, 100 V	

Telecom

aa . 🛓 🛐

Military | Aircraft

Accessories

The UCS 200N Ultra Compact Simulator for automotive transients unites the capabilities of an EFT/burst simulator, a micropulse simulator and the required coupling network in one box. The UCS 200N can be equipped to meet all international and car manufacturer specifications from around the globe. The coupling network can carry currents up to 200 A depending on the model. For non-standard tests the waveform parameters of the micropulse generator can be varied over a wide range. The built-in coupling network can be used and controlled by any unit of the LD 200N series, VDS 200N series and PFS 200Nx series. Load Dump pulses simulate the sudden disconnection (e.g. by corrosion) of the battery from the alternator while the alternator is generating current to load the battery. Such Load Dump pulses are high-energy pulses with a high destructive potential. The LD 200N simulates these high-energy pulses having a duration time in the range of hundreds of milliseconds.

8

UCS 200N

Ultra Compact Simulator for automotive transients for pulses 1, 2a and 3a/3b

- > Test pulses acc. to ISO, JASO, NISSAN, SAE
- > Manual & remote operation
- > Freestyle pulse shape generation
- ISO 7637-2, ISO 7637-3, SAE J1113, JASO D001, manufacturer specifications

🖻 LD 200N

Automotive high-energy Load Dump generator for pulses 5 and 7

>	RLC Generator, test pulses 5a/5b as per ISO 7637-2
>	Manual & remote operation
	Poal internal register coloctable

ISD 7637-2, SAE J1113, manufacturer specifications

ECHNICAL DATA (OVERVI	ew) 📃 🏹 🎹	TECHNICAL DATA (OVERV
Pulse 3a/3b as per ISO 7637-2		Pulse 5a as per ISO 7637-2
Open-circuit:	25 V – 1,000 V	Open-circuit:
Rise time:	5 ns	Rise time:
Pulse duration:	150 ns	Pulse duration:
Ri:	50 Ω	Ri:
3a > negative, 3b > positive		Pulse 5b as per ISO 7637-2
Micropulses as per ISO 7637-2		Clipp voltage
Open-circuit:	20 V – 600 V	
Pulse 1, 1a, 2a and 6		Manufacturer specifications
Ri:	2, 4, 10, 20, 30, 50, 90 Ω	SAE 1455, JASO, Chrysler, Ford
Dutput coaxial connector	50 Ω	Scania, Mercedes, Nissan
SAE J1455 inductive & mutual		
NISSAN B2, C8, C50, C300		Freestyle
ASO A2, B2, D2		Rise time tr:
Freestyle		
Open-circuit:	20 V – 600 V	
Rise time tr:	1 μs – 10 μs	
Duration td:	50 μs – 10,000 μs	Pulse duration
Ri:	2 – 450 Ω	Internal resistor
OUT supply:	60 V/50 A	

Load Dump pulses simulate the sudden disconnection (e.g. by corrosion) of the battery from the alternator while the alternator is generating current to load the battery. Such Load Dump pulses are high-energy pulses with a high destructive potential. The LD 200Sx simulates these high-energy pulses having a duration time in the range of hundreds of milliseconds. Micropulses occur in the battery supply system when an inductive load is disconnected from the DC supply. Their polarity depends on whether the inductive load is of a passive (e.g. a heater) or an active type (e.g. a DC motor). These pulses have a rise time in the low μ s range and a duration of several tenths or hundreds or thousands of μ s. The generator has a built-in battery switch to interrupt the DC supply voltage as required and is designed to withstand pulses up to 1,100 V.

TECHNICAL DATA (OVERVIE)	N)	V N
LD 200S18 as per Toyota	Field decay	
LD 200S19 as per Toyota	Load Dump Pulse 1	
	Load Dump Pulse 2	
	Load Dump Pulse 3	

TECHNICAL DATA (OVERVII	ew) 🎽 🔽
Pulse 1 (24 V) as per ISO 7637	
Open-circuit voltage	50 V – 1,100 V
Rise time	< 3 µs
Pulse duration	1,000 µs
Ri	50 Ω
Polarity	Negative
Pulse 2 as per ISO 7637	
Open-circuit	50 V – 1,100 V
Rise time	< 1 µs
Pulse duration	50 µs
Ri	2 Ω
Polarity	Positive
DUT supply:	60 V/25 A
Ri:	2, 4, 10, 20, 30, 50 Ω

Military | Aircraft

Accessories

Company

CONDUCTED AND **RADIATED IMMUNITY**

Bulk Current Injection (BCI) is a test procedure to test immunity to electrical disturbances caused by narrowband electromagnetic energy. The test signal is injected by means of a current injection probe. In physical terms the current injection probe is a current transformer laid around the wiring harness. Immunity tests are performed varying the level and the frequency of the injected test signal. The BCI test method is widely known in the automotive industry as well as in the military/aircraft industry to test single components of a complex system.

The CWS 500N3 is a state-of-the-art solution in a compact one-box design to test immunity to conducted audio frequency disturbances and low-frequency magnetic fields. The CWS 500N3 includes signal generator, LF amplifier, coupling transformer, frequency selective current and voltage monitor, software and GPIB interface.

ICD software supports the test routines, controls external measuring devices and automatically generates test reports with all test data included.

al 🤈 👶 🛐

CWS 500N2

 \sim NN M

Bulk Current Injection (BCI) testing

Compact simulator as per ISO 11452-4; EN 61000-4-6	
> 10 kHz to 400 MHz, 100 W (expandable up to 1 GHz)	
> System solution is fully designed and supported by EMTES	ST

ISO 11452-4, ISO 11452-5, vehicle manufacturer specifications

Audio frequency and magnetic field testing

ISO 11452-10, vehicle manufacturer specifications, SAE J1113, MIL-STD 461

TECHNICAL DATA (OVERVIEW)

BCI method	ISO 11452-4
Output power	100 W (nominal)
Output impedance	50 Ω
Max. VSWR	1:2.0
Output level	-13 dBm – 50 dBm
Sinusoidal (CW)	10 kHz – 1,000 MHz
Modulation	AM 1 – 3,000 Hz, 0 – 95%
	PM 1 – 3,000 Hz
	Duty cycle 10% – 80%
Output	N-connector
Built-in power meter	Channel 1 forward power
	Channel 2 reverse power
	Channel 3 injected current
Built-in coupler	Max 200 W/1 GHz

TECHNICAL DATA (OVERVIE)	w) 📈 🕅 M
Conducted immunity	ISO 11452-10
Output level	0.001 V – max. 6.5 Vrms
Output current	Max. 14 A
Frequency range	10 Hz to 250 kHz
Output power nominal	100 W
Output power peak	400 W
Output impedance	< 0.5 Ω
Harmonic distortion	< 15 dBc at max. power
Coupling	Audio transformer included
Measurements	Freq. selective volt/amp meter
Verification load	0.5 Ω & 4 Ω included
Radiated immunity	ISO 11452-8
Magnetic field	Max. 1,000 A/m up to 1 kHz
Frequency range	15 Hz to 150 kHz
Radiating loop	As per MIL 461E
Magnetic field sensor	As per ISO 11452-8
Current sensor	Included

Company

SWITCHING TRANSIENTS

The PFS 200N Power Fail Simulator is used to comply with standard requirements, mainly from vehicle manufacturers, to perform fast voltage dips and drops (micro-interruptions). Some standards specify very fast rise and fall times below 1 microsecond which require an electronic switch. The RCB 200 is used to comply with standard requirements, mainly from vehicle manufacturers, to perform fast voltage dips and drops (micro-interruptions).

TRANSIENT EMISSION

The BS 200B is used to measure transient emissions to the wiring harness of parts and components installed in a vehicle. Additionally a required LISN is available. The network and the switch can be operated independently as required for the measurements.

ACCESSORIES AUTOMOTIVE

A complete overview of EMTEST accessories for the various test applications is given on pages 52 – 58.

CALIBRATION SET CAEFT KIT

BS 200B

Artificial network for measurement of transient emissions

Acc. to IEC 61000-4-4, ed. 2

6

> Connection to: UCS 200N, UCS 500Nx, EFT 500Nx

The pulse shape of EFT/burst generators designed as per IEC 61000-4-4 have to be verified at 50 Ω as well at 1,000 Ω load. Both matching resistors additionally include a voltage divider to measure the wave form.

TECHNICAL DATA (OVERVIEW)

າມມານນັ້ນນັ້ນນັ້ນນານນານ

ISO 7637-1:1990, ISO 7637-2:1990, ISO 7637-2:2004

Transient emission	
as per ISO 7637-2	
Voltage range	0 – 30 VDC
Rated current	25 A
Short-circuit protected	10 Hz to 250 kHz
Max. inrush current	> 500 A
Peak voltage capability	1,000 V
Overvoltage protection	By varistors
Electronic switch	
Switching time	
(test load 7 μ H/0.6 Ω)	300 – 400 ns
Switch-off time can be selected	10 ms/200 ms
Artificial network	
Shunt resistor (Rs)	
Internal selectable	120 Ω, 40 Ω, 20 Ω, 10 Ω
Dimensions & test set-up	As specified in ISO 7637-2
CABS calibration load	
Impedance according to	
ISO 7637	5 μΗ – 50 Ω
Inductance	5 μH/5 mΩ

CA ISO

> Connection to: UCS 200N, LD 200Nx, LD 200Sx

A different set of resistors is used for the verification of transient generators as per Iso 7637-2. The generator output is measured under matched load conditions which means $R_I = R_L$.

ELECTROSTATIC DISCHARGE

Peak of discharge currents

3.75 A/kV

Electrostatic discharges either from a human body to any other part or between two different objects can cause persistent disturbances or even destruction to sensitive electronics or controls. Voltages of several thousand volts are generated. dito is the most advanced ESD tester to simulate ESD pulses as accurately as possible according to the latest standards.

OVERVIEW						
Application	Power Mains Simulation	Transients	Conducted Immunity	Radiated Immunity	Harmonics & Flicker	Electrostatic Discharge
Products	PFS 503Sx UCS 500Nx	UCS 500Nx VCS 500Nx	CWS 500N1 CWS 500N2	UCS 500Nx	DPA 500N ACS 500N	dito ESD 30N
Standards	ITU K ETSI	ITU K ETSI BELLCORE FCC part 68	ITU K ETSI	ITU K ETSI	ITU K ETSI	ITU K ETSI BELLCORE

TRANSIENTS, RADIATED IMMUNITY AND POWER MAINS SIMULATION

The UCS 500N4/UCS 500N7 Ultra Compact Simulator is the most versatile tester to cover transient and power-fail requirements according to international standards (basic and generic standards) and product family standards with voltage capability of up to 7 kV. In addition to the IEC 61000-4-5 standard for surge testing it also complies with ANSI/IEEE C62.41 for surge and ring wave testing.

The UCS 500N7 is the most economical test solution for fully compliant immunity tests and CE marking. Having a built-in CDN for single-phase EUT up to 300 V and max. 16 A. It can be extended for testing three-phase EUTs by means of an automatically controlled external coupling network up to 690 V with max. 100 A.

EMTEST supplies a large range of accessories for the various applications.

Concept

🛲 🤰 🛌 🐴 🙆 ሞ

Automotive

UCS 500N4

Compact tester for EFT/burst, surge and power fail

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11, IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, EN 55024, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45, EN 300329

🔰 🖬 🖍 🙆 🖤 🛛 UCS 500N7

Compact tester for EFT/burst, surge, ring wave and power fail

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11, IEC 61000-4-12, IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, ITU-T K.20, ITU-T K.21, ITU-T K.45, Bellcore GR-1089-Core, ANSI/IEEE C62.41, EN 61543,

TECHNICAL DATA (OVERVIE)	M 🔟 🎹 🗹 🔽 🔽 🚾
EFT as per IEC 61000-4-4, ed. 2	
Open-circuit	200 V - 4,400 V
Rise time tr	5 ns
Pulse duration td	50 ns
Source impedance	Zq = 50 Ω
Polarity	Positive/negative
Surge as per IEC 61000-4-5	
Open-circuit voltage 1.2/50 µs	160 V – 4,000 V
Short-circuit current 8/20 µs	80 A – 2,000 A
Polarity	Positive/negative/alternate
Mag. field as per IEC 61000-4-9	100, 300, 1,000 A/m
Dips as per IEC 61000-4-11	
AC voltage/current	Max. 250 V/16 A
Inrush current	More than 500 A
Mag. field as per IEC 61000-4-8	1, 3, 10 and 30 A/m with MC 2630
	100, 300 and 1,000 A/m with MC26100
Telecom surge as per IEC 61000-4-5	
Open-circuit 10/700 µs	160 V – 4,000 V
Short-circuit current 4/300 µs	4 A – 100 A

TECHNICAL DATA	
EFT as per IEC 61000-4-4, ed. 2	
Open-circuit	200 V – 5,500 V
Rise time tr	5 ns
Pulse duration td	50 ns
Source impedance	Zq = 50 Ω
Polarity	Positive/negative
Surge as per IEC 61000-4-5	
Open-circuit voltage 1.2/50 µs	250 V – 7,000 V
Short-circuit current 8/20 μs	125 A – 3,500 A
Polarity	Positive/negative/alternate
Mag. field as per IEC 61000-4-9	100, 300, 1,000 A/m
Dips as per IEC 61000-4-11	
AC voltage/current	Max. 300 V/16 A
Inrush current	More than 500 A
Mag. field as per IEC 61000-4-8	1, 3, 10 and 30 A/m with MC 2630
	100, 300 and 1,000 A/m with MC26100
Ring wave as per IEC 61000-4-12	
Open-circuit voltage 0.5 $\mu s/100~kHz$	6,000 V with 12 Ω and 30 Ω source impedance
Telecom surge as per IEC 61000-4-5	
Open-circuit 10/700 µs	250 V – 7,000 V
Short-circuit current 4/300 µs	6 A – 175 A

Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high-voltage or current transients. Another source of surge pulses are switching transients originating from switching disturbances and system faults. Due to the characteristic of the phenomenon nearly every electrical and electronic device may suffer from such lightning events. Surge tests should therefore be widely performed. Surge voltage can reach several thousands of volts and surge current is seen to reach several thousands of amps.

🄰 🖦 🏂 🍈 🖤 🛲

VCS 500N4

Surge tester 4.4 kV

> 4.4 kV/2.2 kA surge, IEC 61000-4-5/-9

> Preprogrammed standard test routines included

> Built-in single-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45 VCS 500N8 Surge tester 8 kV

🤰 🖬 🍇 🙆 🖤 🛲

> Testing beyond the limits, 8 kV/4 kA, IEC 61000-4-5/-9

> Manual & remote operation

> Built-in single or 3-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL DATA (OVERVIE)	N)	NN
Surge as per IEC 61000-4-5		
Open-circuit voltage	250 V – 8,000 V	
Wave shape		
Rise time tr	1.0 μs	
Pulse duration	50 µs	
Short-circuit current	125 A – 4,000 A	
Wave shape		
Rise time tr	6.4 µs	
Pulse duration	16 μs	
Polarity	Positive/negative/alternate	
Output direct	HV-banana connector	
Coupling network	$L - N$ with $Z = 2 \Omega$	
	L-PE, N-PE, L+N-PE; Z = 12 Ω	

TECHNICAL DATA (OVERVIEW)

Surge as per IEC 61000-4-5	
Open-circuit voltage	160 V – 4,400 V
Wave shape	
Rise time tr	1.0 µs
Pulse duration	50 µs
Short-circuit current	80 A – 2,200 A
Wave shape	
Rise time tr	6.4 µs
Pulse duration	16 µs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	$L - N$ with $Z = 2 \Omega$
	L-PE, N-PE, L+N-PE; $Z = 12 \Omega$

Concept

🤰 🖦 🌠 💼 🖤 🛲

Telecom

VCS 500N10

Surge tester 10 kV

External CDNs for power mains and I/O line applications

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

2 🖬 🚯 🖗 🛲 🛛 VCS 500N7T

> IEC 61000-4-5, ITU

>7.0 kV/3.5 kA surge & 7.0 kV telecom surge 10 $\mu s/700~\mu s$

> Built-in single-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL DATA (OVERVIE)	N)	TECHNICAL
Surge as per IEC 61000-4-5		Surge as per l
Open-circuit voltage	250 V – 10,000 V	Open-circuit v
Wave shape		Wave shape
Rise time tr	1.0 μs	Rise time tr
Pulse duration	50 µs	Pulse duratio
Short-circuit current	125 A – 5,000 A	Short-circuit of
Wave shape		Wave shape
Rise time tr	6.4 µs	Rise time tr
Pulse duration	16 µs	Pulse duratio
Polarity	Positive/negative/alternate	Polarity
Output direct	HV-banana connector	Output direct
Coupling network	External option	Coupling netw
		Telecom surg
		Front time

TECHNICAL DATA (OVERVIE)	N) 🔽 🔽 🔽
Surge as per IEC 61000-4-5	
Open-circuit voltage	250 V – 7,000 V
Wave shape	
Rise time tr	1,0 µs
Pulse duration	50 µs
Short-circuit current	125 A – 3,500 A
Wave shape	
Rise time tr	6.4 µs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	$L - N$ with $Z = 2 \Omega$
	L-PE, N-PE, L+N-PE; Z = 12 Ω
Telecom surge	250 V – 7,000 V
Front time	10 µs
Pulse duration	700 µs
Short-circuit current	6.0 – 175 A
Rise time tr	4 µs
Pulse duration	300 µs

Telecommunication networks are exposed to lightning events. Therefore telecommunication equipment that is connected to the outside world needs to have appropriate protection that demonstrates an acceptable level of immunity to surge transients in order not to fail during lightning events. Telecom surge simulators of the TSS 500 series are used to test the immunity of telecommunication equipment.

TSS 500M4B Telecom surge tester

> Compact telecom surge generator as per GR 1089 → All 10/360 µs, 10/1,000 µs and 2/10 µs included > Built-in resistive coupling network

Bellcore GR-1089-Core, ITU-T K.12, ITU-T K.28, ITU-T K.45

First level lightning	2,000 V/1,000 A
Rise time tr	10 µs
Duration td	250 µs
Second level lightning	4,000 V/2,000 A
Rise time tr	10 µs
Duration td	250 μs
First level lightning surge	3,000 V/2,000 A
Rise time tr	10 µs
Duration td	250 μs
High exposure premises	4,000 V/4 × 500 A
Rise time tr	10 µs
Duration td	250 μs
4 wire application	4 × 500 A for T, R, T1, R1

> 10/250 µs for open-circuit voltage and short-circuit current

> Up to 4 kV peak voltage and 2 kA peak current

TECHNICAL DATA (OVERVIEW)					
1,000 V & 167 A per conducto					
10 μs/1,000 μs					
1,000 V & 100 A per conducto					
10 µs/360 µs					
1,000 V & 100 A per conducto					
10 µs/1,000 µs					
2,500 V & 500 A per conducto					

Pulse 2/10 μ s with 5 Ω	2,500 V & 500 A per conductor
Rise time tr/Pulse duration td	2 µs/10 µs
Pulse 10/360 μs with 40 Ω	1,000 V & 25 A per conductor
Rise time tr/Pulse duration td	10 µs/360 µs
Intra-building lightning	
Pulse 2/10 μs with 8 Ω	2,500 V & 312 A per conductor
Rise time tr/Pulse duration td	2 µs/10 µs
Pulse 2/10 μs with 15 Ω	2,500 V & 167 A per conductor
Rise time tr/Pulse duration td	2 µs/10 µs
Second-level lightning	
Pulse 2/10 μs with 10 Ω	5,000 V & 500 A per conductor
Rise time tr/Pulse duration td	2 µs/10 µs

Company Concept Automotive

) 🛲

TSS 500M2

Telecom surge tester

2 📼 TSS 500M2F

Telecom surge generator for surge A pulses as per FCC part 68

>	High-power telecom surge generator as per GR 1089
>	10/1,000 μs for open-circuit voltage and short-circuit current
>	Up to 2 kV peak voltage and 200 A per wire peak current

>	Compact telecom surge generator as per FCC part 68
>	Built-in 10/160 µs & 10/560 µs transients
>	Built-in resistive coupling network

FCC 97-270 (part 68)

TECHNICAL DATA (OVERVIE	W)		TECHNICAL DATA (OVE
Pulse 10/1,000 μs with 10 Ω	2,000 V & 200 A per conductor		AC power port surge
Rise time tr/Pulse duration td	10 µs/1,000 µs		Rise time tr
4 wire application	T, R, T1, R1		Pulse duration
			Short-circuit current
		Rise tin	ne tr
		Pulse duration	i
		Coupling network	c
		Metallic surge	
		Rise time tr	
		Pulse duration	
		Short-circuit curren	t
		Rise time tr	
		Pulse duration	
		Longitudinal surge	
		Rise time tr	
		Pulse duration	
		Short-circuit current	
		Rise time tr	
		Pulse duration	

ELECTROSTATIC DISCHARGE

Specification contact discharge

Peak of discharge currents

Rise time tr

500 V to 10 kV

0.7 – 1 ns

3.75 A/kV

Electrostatic discharges either from a human body to any other part or between two different objects can cause persistent disturbances or even destruction to sensitive electronics or controls. Voltages of several thousand volts are generated. dito is the most advanced ESD tester to simulate ESD pulses as accurately as possible according to the latest standards.

- esd.control software

- Power supply: AC (88 - 250 V), DC (11 - 16 V)

- Battery mode included for several hours

CONDUCTED AND RADIATED IMMUNITY

The CWS 500N1 is the most compact single-box test equipment to test conducted rf immunity as per IEC 61000-4-6 and related standards. As well as 1 kHz 80% AM the CWS 500N1 also generates 2 Hz 80% AM to test medical appliances and 1 Hz PM with 50% duty cycle required to test safety equipment such as fire alarms. EMTEST supplies a large range of CDNs, EM clamps, current injection clamps and calibration accessories. Bulk Current Injection (BCI) is a test procedure to test the immunity to electrical disturbances from narrowband electromagnetic energy. The test signal is injected by means of a current injection probe. In physical terms the current injection probe is a current transformer laid around the wiring harness. Immunity tests are performed varying the level and the frequency of the injected test signal. The BCI test method is widely known in the automotive industry as well as in the military/aircraft industry to test single components of a complex system.

CWS 500N1

The single-box solution for rf-conducted immunity testing

> RF-conducted immunity testing as per IEC 61000-4-6

> Up to 300 MHz test frequency

> Self-calibration procedures for CDNs and coupling clamps

IEC 61000-4-6, IEC 60601-1-2:2002, EN 300340, EN 300342- 1, EN 300386 V1.3.2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, EN 61000-6-1, EN 61000-6-2, EN 300329

2 🖬 🔩 🛍 🖤 🛛 CWS 500N2

The single-box solution for rf-conducted immunity testing

Compact simulator as per ISO 11452-4; EN 61000-4-6
> 10 kHz to 400 MHz, 100 W (expandable up to 1 GHz)
> System solution is fully designed and supported by EMTES

IEC 61000-4-6, EN 61000-6-1, EN 61000-6-2, IEC 60601-1-2:2002, ISO 11452-4, ISO 11452-5, DaimlerChrysler DC-10614, Ford ES-XW7T-1A278-AB, Ford ESXW7T- 1A278-AC, GMW 3097 (2001), GMW 3097 (2004), MBN 10284-2:2002, PSA B21 7110, Renault 36.00.808/-D, Renault 36.00.808/-G, MIL STD 461D/CS 114, MIL STD 461E/CS 114, RTCA/D0 160 Section 20, Fiat 9.90110

TECHNICAL DATA (OVERVIE)	v) 📈 🕅	TEC
Frequency range	9 kHz – 1 GHz (internal signal generator)	Outp
Modulation	AM 1 – 3,000 Hz, 0 – 95%	Outp
	PM 1 – 3,000 Hz	Max.
	Duty cycle 10% – 80%	Outp
With built-in amplifier	100 kHz – 300 MHz	Sinu
Output level	1 – 30 Vrms after 6 dB-attenuator	Mod
Output power	80 W (nominal)	
Output impedance	50 Ω	
max. VSWR	1 : 1.2 at all phase angles and at max. power (without destruction)	Outp Built
Harmonic distortion	< 15 dBc	
Preprogrammed modulation		
method	Amplitude modulation	Built
	80% < ±5%, 1 kHz < ±10%	
	80% < ±5%, 2 Hz, 1 kHz	
Pulse modulation	1 Hz, 50% duty cycle acc. to EN 50130-4	

CHNICAL DATA (OVERVIEW) M put power 100 W (nominal) put impedance 50 Ω x. VSWR 1: 2.0

Dutput level	-13 dBm – 50 dBm
Sinusoidal (CW)	10 kHz – 1,000 MHz
Nodulation	AM 1 – 3,000 Hz, 0 – 95%
	PM 1 – 3,000 Hz
	Duty cycle 10% - 80%
Dutput	N-connector
Built-in power meter	Channel 1 forward power
	Channel 2 reverse power
	Channel 3 injected current
Built-in coupler	Max 200 W/1 GHz

HARMONICS & FLICKER

Harmonics and interharmonics are caused by modern electronic power conditioning modules. Such modules (mostly nonlinear) to control loads and reduce power consumption are the source of voltage at unwanted frequencies superimposed on the supply voltage. Voltage fluctuations caused by varying load currents may influence luminance or spectral distribution of lighting systems. The impression of unsteadiness of visual sensation induced by this light stimulus is called flicker. Flicker also needs to be limited to a minimum. The DPA 500N is used for single-phase applications and the DPA 503 is used for 3-phase applications but also supports single-phase applications. ACS 500N is a single-phase and the ACS 503 a 3-phase AC source, specially designed for harmonics and flicker testing. It meets the corresponding specifications as per IEC/EN

61000-3-2 and IEC/EN 61000-3-3. It provides the perfect sinusoidal and stable voltage signal specified to give fully compliant harmonics and flicker analyses irrespective of the mains supply frequency and steadiness of the voltage.

DPA 500N

🤰 🖬 🏠 🍘

Single-phase power analyser, H&F analyser

> Single-phase harmonics/flicker analyser

> Built-in single-phase flicker impedance

> Real-time analysis using internal computer and DSP

IEC 61000-3-2, IEC 61000-3-3, IEC 61000-3-11, IEC 61000-3-12, IEC 61000-4-7, IEC 61000-4-15, IEC 60601-1-2:2002, EN 61000-6-1, EN 61000-6-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 300386-2, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12, EN 61000-4-7, EN 61000-4-15, JIS C 61000-3-2

TECHNICAL DATA (OVERVIE)	N)
Input channels	2 (1 × current & voltage)
EUT connection	1-phase
A/D converter	16 bit
Class of instrument	Class A as per IEC/EN 61000-4-7, ed. 2
Voltage input	10 – 530 Vrms
Overload	4,000 V peak
Current input	50 A
Input range internal	50 A peak – 16 A continuous
Input range external	Standard delivered model max. 140 A
	(factory setting 2 turns 70 A)
Harmonic analysis	IEC/EN 61000-3-2 and IEC/EN 61000-3-12,
	according to IEC/EN 61000-4-7
Harmonic range	1 – 50th harmonic
Grouping	Interharmonics acc. to IEC/EN 61000-4-7, ed. 2
Display	Urms, irms, ipeak, upeak, P, Q, S, power Factor,
	THD(U), THD(I), crest factor(u), crest factor(i)
Flicker analysis	IEC/EN 61000-3-3 and IEC/EN 61000-3-11,
	according to IEC/EN 61000-4-15
Flicker data	P _{st} and P _{lt} , Vrms, dmax, dc, dt, P50, P10, P3,
	P1, P0.1
Flicker impedance: Phase Neutral	0.24 Ω + j 0.15 Ω 0.16 Ω + j 0.10 Ω

Single-phase AC voltage source up to 6 kVA

ACS 500N

	AC power source up to 300 V/20 A single phase
	> Large inrush current capability
I	Controlled by DPA 500 and ISMDPA software

IEC 61000-3-2, IEC 61000-3-3, EN 61000-3-2, EN 61000-3-3, IEC 61000-3-11

TECHNICAL DATA (OVERVIEW)			
ACS 500N6			
Voltage range	0 to 300 V		
Voltage resolution	0.025% (12 bit)		
Output frequency	10 Hz to 80 Hz		
Output power	6,000 VA		
Output connector	Safety banana-plug		
ACS 500N2			
Voltage range	0 to 300 V		
Voltage resolution	0.025% (12 bit)		
Output frequency	10 Hz to 80 Hz		
Output power	2,000 VA		
Output connector	Safety banana-plug		

🤰 🖬 🍇 💼 🖤

Accessories

INDUSTRY MEDICAL RESIDENTIAL BROADCAST

OVERVIEW						
Application	Power Mains SImulation	Transients	Conducted Immunity	Radiated Immunity	Harmonics & Flicker	Electrostatic Discharge
Products	PFS 503Sx UCS 500Nx	UCS 500Nx EFT 500Nx VCS 500Nx OCS 500M6 TSS 500Mx	CWS 500N1 CWS 500N2 CWS 500N4	UCS 500Nx OCS 500M6	DPA 500N ACS 500N DPA 503 ACS 503 AIF 503	dito ESD 30N
Standards	IEC 1000-4-11	IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-12	IEC 61000-4-6	IEC 61000-4-8 IEC 61000-4-9 IEC 61000-4-10	IEC 61000-3-2 IEC 61000-3-3 IEC 61000-3-11 IEC 61000-3-12	IEC 61000-4-2

TRANSIENTS, RADIATED IMMUNITY AND POWER MAINS SIMULATION

The UCS 500N4/UCS 500N7 Ultra Compact Simulator is the most versatile tester to cover transient and power-fail requirements according to international standards (basic and generic standards) and product family standards with voltage capability of up to 7 kV. In addition to the IEC 61000-4-5 standard for surge testing it also complies with ANSI/IEEE C62.41 for surge and ring wave testing. The UCS 500N7 is the most economical test solution for fully compliant immunity tests and CE marking. Having a built-in CDN for single-phase EUT up to 300 V and max. 16 A. It can be extended for testing three-phase EUTs by means of an automatically controlled external coupling network up to 690 V with max. 100 A.

EMTEST supplies a large range of accessories for the various applications.

Concept

🛲 🤰 🛌 🍾 🏠 ሞ

Automotive

UCS 500N4

Compact tester for EFT/burst, surge and power fail

> Small and compact all-in-one tester

> IEC 61000-4-4/-5/-8/-9/-11/

> Built-in single-phase CDN

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11, IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, EN 55024, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45, EN 300329

2 🖬 🔩 🖻 🖤 🛛 UCS 500N7

Compact tester for EFT/burst, surge, ring wave and power fail

1 Tecting	beyond the	limite 55	k\/ FFT & 7	kV curo
/ resung	beyond the			KV SUIS

- Ontional DWC module of new (1000 / 12)
- > Manual & remote operation

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11, IEC 61000-4-12, IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, ITU-T K.20, ITU-T K.21, ITU-T K.45, Bellcore GR-1089-Core, ANSI/IEEE C62.41, EN 61543, IEC 61008-1, IEC 61009-1

EFT as per IEC 61000-4-4, ed. 2	
Open-circuit	200 V - 4,400 V
Rise time tr	5 ns
Pulse duration td	50 ns
Source impedance	Zq = 50 Ω
Polarity	Positive/negative
Surge as per IEC 61000-4-5	
Open-circuit voltage 1.2/50 µs	160 V – 4,000 V
Short-circuit current 8/20 µs	80 A – 2,000 A
Polarity	Positive/negative/alternate
Mag. field as per IEC 61000-4-9	100, 300, 1,000 A/m
Dips as per IEC 61000-4-11	
AC voltage/current	Max. 250 V/16 A
Inrush current	More than 500 A
Mag. field as per IEC 61000-4-8	1, 3, 10 and 30 A/m with MC 2630
	100, 300 and 1,000 A/m with MC26100
Telecom surge as per IEC 61000-4-5	
Open-circuit 10/700 µs	160 V – 4,000 V
Short-circuit current 4/300 µs	4 A – 100 A

TECHNICAL DATA	
EFT as per IEC 61000-4-4, ed. 2	
Open-circuit	200 V – 5,500 V
Rise time tr	5 ns
Pulse duration td	50 ns
Source impedance	Zq = 50 Ω
Polarity	Positive/negative
Surge as per IEC 61000-4-5	
Open-circuit voltage 1.2/50 µs	250 V – 7,000 V
Short-circuit current 8/20 µs	125 A – 3,500 A
Polarity	Positive/negative/alternate
Mag. field as per IEC 61000-4-9	100, 300, 1,000 A/m
Dips as per IEC 61000-4-11	
AC voltage/current	Max. 300 V/16 A
Inrush current	More than 500 A
Mag. field as per IEC 61000-4-8	1, 3, 10 and 30 A/m with MC 2630
	100, 300 and 1,000 A/m with MC26100
Ring wave as per IEC 61000-4-12	
Open-circuit voltage 0.5 $\mu s/100~kHz$	6,000 V with 12 Ω and 30 Ω source impedance
Telecom surge as per IEC 61000-4-5	
Open-circuit 10/700 μs	250 V – 7,000 V
Short-circuit current 4/300 µs	6 A – 175 A

EFT 500Nx - an EFT/burst generator - is an intelligent solution offering exactly what you need for full-compliance immunity tests for electrical/fast transient phenomena. The distinct operation features, convenient DUT connection facilities, a clearly arranged menu structure and display concept as well as the preprogrammed standard test routines make testing easy, reliable and safe. Extendable with a variety of test accessories the EFT 500Nx is a universal device for a broad range of recommendations, including three-phase applications up to 100 A.

EFT 500N5 Electronic-fast-transient simulator

Electronic-fast-transient simulator

IEC 61000-4-4 second edition 2004-7, EN 61000-4-4:2005-07

> Built-in single-phase CDN

IEC 61000-4-4 second edition 2004-7, EN 61000-4-4:2005-07

TECHNICAL DATA (OVERVIE	w) 🛄 🎹	TECHNICAL DATA (OVERVIE	w) 🛄 🎹
EFT as per IEC 61000-4-4, ed. 2		EFT as per IEC 61000-4-4, ed. 2	
Open-circuit	200 V - 4,800 V	Open-circuit	1,000 V – 7,000 V
Wave shape into a 50 Ω load	100 V – 2,400 V	Wave shape into a 50 Ω load	500 V – 3,500 V
Rise time tr	5 ns	Rise time tr	5 ns
Pulse duration td	50 ns	Pulse duration td	50 ns
Wave shape into a 1,000 Ω load	200 V – 4,800 V	Wave shape into a 1,000 Ω load	1,000 V – 7,000 V
Rise time tr	5 ns	Rise time tr	5 ns
Pulse duration td	35 ns – 150 ns	Pulse duration td	35 ns – 150 ns
Source impedance	Zq = 50 Ω	Source impedance	Zq = 50 Ω
Polarity	Positive/negative	Polarity	Positive/negative
Output 50 Ω coaxial connector	To connect external coupler	Output 50 Ω coaxial connector	To connect external coupler
Coupling network	To L, N, PE all combinations	Coupling network	To L, N, PE all combinations
Verification		Verification	
Coaxial output	Wave shape on 50 Ω and 1,000 Ω	Coaxial output	Wave shape on 50 Ω and 1,000 Ω
CDN output	Wave shape 5/50 ns on 50 Ω during common mode coupling	CDN output	Wave shape 5/50 ns on 50 Ω during common mode coupling
DUT power mains supply	AC 250 V/16 A, 50/60 Hz; DC 250 V/10 A	DUT power mains supply	AC 250 V/16 A, 50/60 Hz; DC 250 V/10 A

Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high-voltage or current transients. Another source of surge pulses are switching transients originating from switching disturbances and system faults. Due to the characteristic of the phenomenon nearly every electrical and electronic device may suffer from such lightning events. Surge tests should therefore be widely performed. Surge voltage can reach several thousands of volts and surge current is seen to reach several thousands of amps.

ጋ 🖬 🌠 🙆 ሞ 🛲

VCS 500N4 Surge tester 4.4 kV

> 4.4 kV/2.2 kA surge, IEC 61000-4-5/-9

> Preprogrammed standard test routines included

> Built-in single-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45 VCS 500N8 Surge tester 8 kV

> Testing beyond the limits, 8 kV/4	kA, IEC 61000-4-5/-9
-------------------------------------	----------------------

Manual & remote operation

> Built-in single or 3-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL DATA (OVERVIE)	N)	
Surge as per IEC 61000-4-5		
Open-circuit voltage	160 V – 4,400 V	
Wave shape		
Rise time tr	1.0 μs	
Pulse duration	50 µs	
Short-circuit current	80 A – 2,200 A	
Wave shape		
Rise time tr	6.4 µs	
Pulse duration	16 µs	
Polarity	Positive/negative/alternate	
Output direct	HV-banana connector	
Coupling network	$L - N$ with $Z = 2 \Omega$	
	L-PE, N-PE, L+N-PE; Z = 12 Ω	

TECHNICAL DATA (OVERVIEW)		
Surge as per IEC 61000-4-5		
Open-circuit voltage	250 V – 8,000 V	
Wave shape		
Rise time tr	1.0 μs	
Pulse duration	50 µs	
Short-circuit current	125 A – 4,000 A	
Wave shape		
Rise time tr	6.4 µs	
Pulse duration	16 μs	
Polarity	Positive/negative/alternate	
Output direct	HV-banana connector	
Coupling network	$L - N$ with $Z = 2 \Omega$	
	L-PE, N-PE, L+N-PE; Z = 12 Ω	

🤰 🖬 🍾 🚺 🖤 🛲

Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high-voltage or current transients. Another source of surge pulses are switching transients originating from switching disturbances and system faults. Due to the characteristic of the phenomenon nearly every electrical and electronic device may suffer from such lightning events. Surge tests should therefore be widely performed. Surge voltage can reach several thousands of volts and surge current is seen to reach several thousands of amps.

VCS 500N10

Surge tester 10 kV

Still compact in size but up to 10 kV/5 kA, IEC 61000-4-5/-9 Manual & remote operation

> External CDNs for power mains and I/O line applications

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

VCS 500N7T

Surge & telecom tester 7 kV

> IEC 61000-4-5, ITU

> 7.0 kV/3.5 kA surge & 7.0 kV telecom surge 10 μ s/700 μ s

> Built-in single-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL DATA (OVERVIE	
Surge as per IEC 61000-4-5	
Open-circuit voltage	250 V – 7,000 V
Wave shape	
Rise time tr	1,0 µs
Pulse duration	50 µs
Short-circuit current	125 A – 3,500 A
Wave shape	
Rise time tr	6.4 μs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	$L - N$ with $Z = 2 \Omega$
	L-PE, N-PE, L+N-PE; Z = 12 Ω
Telecom surge	250 V – 7,000 V
Front time	10 µs
Pulse duration	700 μs
Short-circuit current	6.0 – 175 A
Rise time tr	4 µs
Pulse duration	300 µs

TECHNICAL DATA (OVERVIEW)

Surge as per IEC 61000-4-5	
Open-circuit voltage	250 V – 10,000 V
Wave shape	
Rise time tr	1.0 μs
Pulse duration	50 µs
Short-circuit current	125 A – 5,000 A
Wave shape	
Rise time tr	6.4 μs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	External option

Company

TRANSIENTS

Telecommunication networks are exposed to lightning events. Therefore telecommunication equipment that is connected to the outside world needs to have appropriate protection that demonstrates an acceptable level of immunity to surge transients in order not to fail during lightning events. Telecom surge simulators of the TSS 500 series are used to test the immunity of telecommunication equipment.

TSS 500M4 Felecom surge tester 4 kV	🤰 🖬 🍇 🌰 🌳 🛲	TSS 500M10 Telecom surge tester 10 kV	/ 👞 🔩 🖆 🖤 🛲
Sector C			
	F		
Compact telecom surge g			m surge generator as per ITU
Built-in 1.2/50 μs & 10/70		> Up to 10 kV peak voltage	
Built-in coupling network	; 4 × 100 Ω and 2 × 25 Ω	> Built-in coupling network	; 4 × 100 Ω and 2 × 25 Ω
C 97-270 (part 68), IEC 61000-4-: J-T K.28, ITU-T K.45	5, ITU-T K.17, ITU-T K.20, ITU-T K.21,	FCC 97-270 (part 68), IEC 61000-4- ITU-T K.28, ITU-T K.45	5, ITU-T K.17, ITU-T K.20, ITU-T K.21,
TECHNICAL DATA (OVERVIE	w) 🏹 🔼	TECHNICAL DATA (OVERVIE	w) 🏹 🔽
)pen-circuit voltage	W) To V - 4,000 V	Open-circuit voltage	W) To No V
Dpen-circuit voltage Telecom surge as per ITU K		Open-circuit voltage Telecom surge as per ITU K	
Open-circuit voltage Telecom surge as per ITU K Wave shape	160 V – 4,000 V	Open-circuit voltage Telecom surge as per ITU K Wave shape	500 V - 10,000 V
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf	160 V – 4,000 V 1.2 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf	500 V – 10,000 V 1.2 μs
Open-circuit voltage Felecom surge as per ITU K Nave shape Front time tf	160 V – 4,000 V	Open-circuit voltage Telecom surge as per ITU K Wave shape	500 V - 10,000 V
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td	160 V – 4,000 V 1.2 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf	500 V – 10,000 V 1.2 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit	160 V – 4,000 V 1.2 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td	500 V – 10,000 V 1.2 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf	160 V – 4,000 V 1.2 μs 50 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit	500 V – 10,000 V 1.2 μs 50 μs
Telecom surge as per ITU K Wave shape	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf	500 V – 10,000 V 1.2 μs 50 μs 10 μs 700 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td	500 V – 10,000 V 1.2 μs 50 μs 10 μs 700 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs 300 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs 300 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs 300 μs 9 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs 300 μs 9 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf Duration td	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs 300 μs 9 μs 720 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf Duration td	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs 300 μs 9 μs 720 μs
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs 300 μs 9 μs 720 μs 4 – 100 A	Open-circuit voltageTelecom surge as per ITU KWave shapeFront time tfDuration tdWave shape open-circuitFront time tfDuration tdWave shape short-circuit currentRise time trDuration tdSurge B as per FCC part 68Wave shape open-circuitFront time tfDuration tdWave shape open-circuitWave shape open-circuitWave shape open-circuitWave shape open-circuitWave shape open-circuitWave shape short-circuit currentWave shape short-circuit current	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs 300 μs 9 μs 720 μs 12.5 - 250 A
Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf Duration td	160 V – 4,000 V 1.2 μs 50 μs 10 μs 700 μs 4 – 100 A 4 μs 300 μs 9 μs 720 μs	Open-circuit voltage Telecom surge as per ITU K Wave shape Front time tf Duration td Wave shape open-circuit Front time tf Duration td Wave shape short-circuit current Rise time tr Duration td Surge B as per FCC part 68 Wave shape open-circuit Front time tf Duration td	500 V - 10,000 V 1.2 μs 50 μs 10 μs 700 μs 12.5 - 250 A 4 μs 300 μs 9 μs 720 μs

The OCS 500M6 includes test capabilities for ring waves up to 6 kV and damped oscillatory waves at 100 kHz and 1 MHz up to 2.5 kV. A ring wave is a non-repetitive damped oscillatory transient occurring in low-voltage power, control and signal lines supplied by public and non-public networks. Damped oscillatory waves are repetitive transients mainly occurring in power, control and signal cables installed in high-voltage and medium-voltage stations. The OCS 500M6 can also be used to perform magnetic field tests as required in IEC 61000-4-10 using a magnetic field coil such as the MS 100.

POWER MAINS SIMULATION

Electronic and electrical equipment may be affected by voltage dips, short interruptions and voltage variations of power supply. Dips and interruptions are caused by faults in the network or installations or by sudden large changes of load. Testing for such a phenomena is required in order to check that electronic and electrical equipment does not fall into unsafe operation conditions.

OCS 500M6

Compact tester for ring wave and damped oscillatory waves

> 100 kHz ring wave & 100 kHz/1 MHz damped Oscillatory

> Conducted immunity and magnetic field test

> Built-in coupling network

ANSI/IEEE C37.90, ANSI/IEEE C62.41, IEC 60255-1, IEC 61000-4-10, IEC 61000-4-12, IEC 61000-4-18

PFS 503SX

Simulator for dips, short interruptions and voltage variations

> True 3-phase voltage dip generator as per IEC 61000-4-11

> Dip mode, line(s) to neutral or line to line

> External variac for STAR and DELTA power mains systems

IEC 61000-4-11, IEC 61000-4-29, IEC 60601-1-2:2002, EN 61000-6-1, EN 61000-6-2

TECHNICAL DATA (OVERVIEW)		TECHN
Damped oscillatory as per IEC 61000-4-18		AC volta
Output voltage open-circuit	250 V – 2,500 V	AC curre
Rise time/Oscillation frequency 1/T	75 ns/100 kHz and 1 MHz	Frequen
Decaying	Peak 5 must be > 50% of peak 1 value	AC volta
	Peak 10 must be < 50% of peak 1 value	AC curre
Source impedance	200 Ω	Frequen
Polarity	Positive/negative	DC volta
Repetition rate	40/s for 100 kHz and 400/s for 1 MHz $$	DC curre
Direct output at the front panel	For ext CDN & magn. field antenna	Inrush ci
Coupling network	1-phase or 3-phase	
Damped oscillatory magnetic field		Dip mod
as per IEC 61000-4-10	MS 100 (square 1 m × 1 m) antenna	
Ring wave as per IEC 61000-4-12		
Output voltage open-circuit	250 V – 6,000 V	
Rise time first peak T1/Oscillation frequency	0.5 μs/100 kHz	
Decaying of Pk1 to Pk2	40% - 110%	
Decaying of Pk2 to Pk3 & decaying of Pk3 to Pk4	40% - 80%	
Output impedance	12 Ω, 30 Ω (200 Ω external)	
Wave shape short-circuit		
Rise time first peak tr T1	< 1 µs	
Oscillation frequency 1/T	100 kHz	

TECHNICAL DATA (OVERVIE)	N) 🔽 🔟
AC voltage L-L	Max. 3 × 440 V
AC current	Max. 3 × 32/63/100 A
Frequency	50/60 Hz
AC voltage L-N	Max. 250 V
AC current	Max. 32, 63, 100 A
Frequency	50/60 Hz
DC voltage	Max. 250 V
DC current	Max. 32, 63, 100 A
Inrush current	> 500 A
	Short-circuit protected
Dip mode	Line to line
	Line to neutral
	Lines to neutral

CONDUCTED AND RADIATED IMMUNITY

The CWS 500N1 is the most compact single-box test equipment to test conducted rf immunity as per IEC 61000-4-6 and related standards. As well as 1 kHz 80% AM the CWS 500N1 also generates 2 Hz 80% AM to test medical appliances and 1 Hz PM with 50% duty cycle required to test safety equipment such as fire alarms. EMTEST supplies a large range of CDNs, EM clamps, current injection clamps and calibration accessories. Bulk Current Injection (BCI) is a test procedure to test the immunity to electrical disturbances from narrowband electromagnetic energy. The test signal is injected by means of a current injection probe. In physical terms the current injection probe is a current transformer laid around the wiring harness. Immunity tests are performed varying the level and the frequency of the injected test signal. The BCI test method is widely known in the automotive industry as well as in the military/aircraft industry to test single components of a complex system.

CWS 500N1

The single-box solution for rf-conducted immunity testing

> RF-conducted immunity testing as per IEC 61000-4-6

> Up to 300 MHz test frequency

> Self-calibration procedures for CDNs and coupling clamps

IEC 61000-4-6, IEC 60601-1-2:2002, EN 300340, EN 300342- 1, EN 300386 V1.3.2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, EN 61000-6-1, EN 61000-6-2, EN 300329

🔰 🖬 🔩 🌒 🖤 🛛 CWS 500N2

The single-box solution for rf-conducted immunity testing

> System solution is fully designed and supported by EMTEST

IEC 61000-4-6, EN 61000-6-1, EN 61000-6-2, IEC 60601-1-2:2002, ISO 11452-4, ISO 11452-5, DaimlerChrysler DC-10614, Ford ES-XW7T-1A278-AB, Ford ESXW7T- 1A278-AC, GMW 3097 (2001), GMW 3097 (2004), MBN 10284-2:2002, PSA B21 7110, Renault 36.00.808/-D, Renault 36.00.808/-G, MIL STD 461D/CS 114, MIL STD 461E/CS 114, RTCA/DO 160 Section 20, Fiat 9.90110

TECHNICAL DATA (OVERVIEV	v) 📈 🕅 🥅	Т	ECHNIC
Frequency range	9 kHz – 1 GHz (internal signal generator)		utput pov
Modulation	AM 1 – 3,000 Hz, 0 – 95%		utput imp
	PM 1 – 3,000 Hz	M	ax. VSWR
	Duty cycle 10% – 80%	0	utput leve
With built-in amplifier	100 kHz – 300 MHz	Si	inusoidal
Output level	1 – 30 Vrms after 6 dB-attenuator		odulatior
Output power	80 W (nominal)		
Output impedance	50 Ω		
max. VSWR	1:1.2 at all phase angles and at max. power	0	utput
	(without destruction)	В	uilt-in pov
Harmonic distortion	< 15 dBc		
Preprogrammed modulation			
method	Amplitude modulation	В	uilt-in cou
	80% < ±5%, 1 kHz < ±10%		
	80% < ±5%, 2 Hz, 1 kHz		
Pulse modulation	1 Hz, 50% duty cycle acc. to EN 50130-4		

TECHNICAL DATA (OVERVIEW)		M	NN	M
Output power	100 W (nominal)			
Output impedance	50 Ω			
Max. VSWR	1:2.0			
Output level	-13 dBm – 50 dBm			
Sinusoidal (CW)	10 kHz – 1,000 MHz			
Modulation	AM 1 – 3,000 Hz, 0 – 95%			
	PM 1 – 3,000 Hz			
	Duty cycle 10% – 80%			
Output	N-connector			
Built-in power meter	Channel 1 forward power			
	Channel 2 reverse power			
	Channel 3 injected current			
Built-in coupler	Max 200 W/1 GHz			

<u>تة</u> .ه. ز

CONDUCTED AND RADIATED IMMUNITY

The CWS 500N4 is the state-of-the-art solution in a compact onebox design to test for immunity to conducted, common mode disturbances in the frequency range 0 Hz (DC) to 150 kHhz. Such test requirements are specified in IEC 61000-4-16 and cover continuous mode testing as well as short term testing with DC, 16 2/3 Hz, 50 Hz and 60 Hz with 4 test levels each plus a sweep mode from 15 Hz to 150 kHz. Complemented by an AC voltage source and a motor variac, the CWS 500N4 forms a complete test system allowing the coupling of the disturbance signals onto the various types of lines by means of the specified coupling networks.

CWS 500N4

Compact simulator for conducted common-mode immunity testing.

Compact simulator as per ISO 61000-4-16

> 15 Hz to 150 KHz

System solution is fully designed and supported by EM TEST

IEC 60533, IEC 61000-4-16, IEC 61326, IEC 61543, IEC 61850-3, IEC 60255-22-7, IEC/EN 60870-5, EN 50121-4

TECHNICAL DATA (OVERVIE)	N) 🕅 🕅 M
Test levels continuous	0.1 – 30 Vrms or DC
Test levels short-term	0.1 – 300 Vrms or DC, for 1 s duration
Test frequencies	DC, 16 2/3 Hz, 50 Hz and 60 Hz
Frequency range	15 Hz to 150 kHz (sweep mode)
Generator impedance	50 Ω
Build-in voltmeter	RMS measurement
Build-in rectifier	For DC testing

ELECTROSTATIC DISCHARGE

Specification contact discharge

Peak of discharge currents

Rise time tr

500 V to 10 kV

0.7 – 1 ns

3.75 A/kV

Electrostatic discharges either from a human body to any other part or between two different objects can cause persistent disturbances or even destruction to sensitive electronics or controls. Voltages of several thousand volts are generated. dito is the most advanced ESD tester to simulate ESD pulses as accurately as possible according to the latest standards.

- esd.control software

- Power supply: AC (88 - 250 V), DC (11 - 16 V)

- Battery mode included for several hours

Telecom

HARMONICS & FLICKER

Harmonics and interharmonics are caused by modern electronic power conditioning modules. Such modules (mostly nonlinear) to control loads and reduce power consumption are the source of voltage at unwanted frequencies superimposed on the supply voltage. Voltage fluctuations caused by varying load currents may influence luminance or spectral distribution of lighting systems. The impression of unsteadiness of visual sensation induced by this light stimulus is called flicker. Flicker also needs to be limited to a minimum. The DPA 500N is used for single-phase applications and the DPA 503 is used for 3-phase applications but also supports single-phase applications. ACS 500N is a single-phase and the ACS 503 a 3-phase AC source, specially designed for harmonics and flicker testing. It meets the corresponding specifications as per IEC/EN 61000-3-2 and IEC/EN 61000-3-3. It provides the perfect sinusoidal and stable voltage signal specified to give fully compliant harmonics and flicker analyses irrespective of the mains supply frequency and steadiness of the voltage.

DPA 500N

Single-phase AC voltage source up to 6 kVA

ACS 500N

Single-phase power analyser, H&F analyser

Single-phase harmonics/flicker analyser

> Built-in single-phase flicker impedance

> Real-time analysis using internal computer and DSP

IEC 61000-3-2, IEC 61000-3-3, IEC 61000-3-11, IEC 61000-3-12, IEC 61000-4-7, IEC 61000-4-15, IEC 60601-1-2:2002, EN 61000-6-1, EN 61000-6-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 300386-2, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12, EN 61000-4-7, EN 61000-4-15, JIS C 61000-3-2

TECHNU	CAL	DATA	(OVERVIEW	A
I FC H N			11) VERVIEW	
LCIIII	C/ L			

🤰 🖬 🍾 🍈 🖤

Input channels	2 (1 × current & voltage)
EUT connection	1-phase
A/D converter	16 bit
Class of instrument	Class A as per IEC/EN 61000-4-7, ed. 2
Voltage input	10 – 530 Vrms
Overload	4,000 V peak
Current input	50 A
Input range internal	50 A peak – 16 A continuous
Input range external	Standard delivered model max. 140 A
	(factory setting 2 turns 70 A)
Harmonic analysis	IEC/EN 61000-3-2 and IEC/EN 61000-3-12,
	according to IEC/EN 61000-4-7
Harmonic range	1 – 50th harmonic
Grouping	Interharmonics acc. to IEC/EN 61000-4-7, ed. 2
Display	Urms, irms, ipeak, upeak, P, Q, S, power Factor,
	THD(U), THD(I), crest factor(u), crest factor(i)
Flicker analysis	IEC/EN 61000-3-3 and IEC/EN 61000-3-11,
	according to IEC/EN 61000-4-15
Flicker data	P _{st} and P _{lt} , Vrms, dmax, dc, dt, P50, P10, P3,
	P1, P0.1
Flicker impedance: Phase Neutral	0.24 Ω + j 0.15 Ω 0.16 Ω + j 0.10 Ω

>	AC power source up to 300 V/20 A single phase
>	Large inrush current capability
>	Controlled by DPA 500 and ISMDPA software

IEC 61000-3-2, IEC 61000-3-3, EN 61000-3-2, EN 61000-3-3, IEC 61000-3-11

TECHNICAL DATA (OVERVIEW)	
ACS 500N6	
Voltage range	0 to 300 V
Voltage resolution	0.025% (12 bit)
Output frequency	10 Hz to 80 Hz
Output power	6,000 VA
Output connector	Safety banana-plug
ACS 500N2	
Voltage range	0 to 300 V
Voltage resolution	0.025% (12 bit)
Output frequency	10 Hz to 80 Hz
Output power	2,000 VA
Output connector	Safety banana-plug

Concept

🖬 🎝 🚺 🌚

Telecom

DPA 503

3-phase power analyser, H&F analyser

flicker analyser	> Three-phase
------------------	---------------

> External three-phase flicker impedance AIF 503

> Real-time analysis using internal computer and DSP

IEC 61000-3-2, IEC 61000-3-3, IEC 61000-3-11, IEC 61000-3-12, IEC 61000-4-7, IEC 61000-4-15, IEC 60601-1-2:2002, EN 61000-6-1, EN 61000-6-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 300386-2, EN 61000-3-2, EN 61000-3-3, EN 61000-4-7, EN 61000-4-15, EN 61000-3-11, EN 61000-3-12 JIS C 61000-3-2

TECHNICAL DATA (OVERVIE)	N) III. 🖂
Input channels	6 (3 × current & voltage)
EUT connection	3-phase
A/D converter	16 bit
Class of instrument	Class A as per IEC/EN 61000-4-7 ed.2
Voltage input	10 – 530 Vrms
Overload	4,000 V peak
Current input	Depends on CT model used
Input range	Standard delivered model max. 140 A
	(factory setting 2 turns 70 A)
Harmonic analysis	IEC/EN 61000-3-2 and IEC/EN 61000-3-12,
	according to IEC/EN 61000-4-7
Harmonic range	1 – 50th harmonic
Grouping	Interharmonics acc. to IEC/EN 61000-4-7, ed. 2
Display	Urms, irms, upeak, ipeak, P, Q, S, power factor,
	THD(U), THD(I), crest factor(u), crest factor(i)
Flicker analysis	IEC/EN 61000-3-3 and IEC/EN 61000-3-11,
	according to IEC/EN 61000-4-15
Flicker data	P _{st} and P _{lt} , Vrms, dmax, dc, dt, P50, P10, P3,
	P1, P0.1

TECHNICAL DATA (OVERVIEW) Voltage range 0 to 300 V Voltage resolution 0.025% (12 bit)

Voltage resolution	0.025% (12 bit)
Output frequency	40 Hz to 80 Hz
Output power	20,000 VA
Output connector	3-phase CEE-connector

Single-phase AC voltage source 20 kVA

AC power	source	for three-p	hase up	to 20	kVA

> Large inrush current capability

Controlled by DPA 503 and ISMDPA software

IEC 61000-3-2, IEC 61000-3-3, IEC 61000-3-11, IEC 61000-3-12, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN 61000-3-12

AIF 503

3-phase flicker impedance 16 A

> Flicker impedance as per IEC 60725 > For flicker analysis as per IEC 61000-3-3

> For 3-phase EUT up to 16 A nominal current

IEC 61000-3-3, IEC 61000-3-11, EN 61000-3-3, EN 61000-3-11, IEC 60725

3-phase flicker impedance 32 A

>	Flicker impedance as per IEC 60725
>	For flicker analysis as per IEC 61000-3-3
>	Built-in Zref and Ztest

IEC 61000-3-3, IEC 61000-3-11, EN 61000-3-3, EN 61000-3-11, IEC 60725

TECHNICAL DATA	
	(()) () () () () () () () () () () () ()
ILCHNICAL DAIA	

Phase	3-phase	
Z ref	$R_A = 0.24 \ \Omega$	$X_A = 0.15 \Omega$
	$R_N = 0.16 \ \Omega$	$X_N = 0.10 \ \Omega$
Z test	Not available	
Accuracy Zref, Ztest	< 3%	
EUT power supply		
Line voltage	3 × 400 V	
Line current	16 A pro phase m	ax.
Line frequency	47 – 63 Hz	

TECHNICAL DATA (OVERVIEW)			\sim
Phase	3-phase		
Z ref	$R_A = 0.24 \ \Omega$	$X_A = 0.15 \ \Omega$	
	$R_N = 0.16 \ \Omega$	$X_{N} = 0.10 \ \Omega$	
Z test	$R_A = 0.15 \ \Omega$	$X_A = 0.15 \ \Omega$	
	$R_N = 0.10 \ \Omega$	$X_N = 0.10 \ \Omega$	
Accuracy Z ref, Z test	< 3%		
EUT power supply			
Line voltage	3 × 400 V		
Line current	32 A pro phase max.		
Line frequency 47 – 63 Hz			

DOWNLOAD THE COMPLETE TECHNICAL DATA:

www.emtest.com

COMPONENTS & SAFETY

OVERVIEW	OVERVIEW					
Application	Surge	Telecom Surge	Oscillatory	Current Surge	Safety	
Products	UCS 500Nx VCS 500Nx	TSS 500Mx TSS 500M6B	OCS 500M6	CSS 500N2 CSS 500N10	VSS 500N12 VSS 500N12S2 VSS 500N6	
Standards	IEC 61000-4-5	ITU K Bellcore	IEC 61000-4-12	Protection devices	IEC 60065 UL 6500	

TRANSIENTS, RADIATED IMMUNITY AND POWER MAINS SIMULATION

ጋ 🛌 🐴 🧰 🖤

The UCS 500N4/UCS 500N7 Ultra Compact Simulator is the most versatile tester to cover transient and power-fail requirements according to international standards (basic and generic standards) and product family standards with voltage capability of up to 7 kV. In addition to the IEC 61000-4-5 standard for surge testing it also complies with ANSI/IEEE C62.41 for surge and ring wave testing.

The UCS 500N7 is the most economical test solution for fully compliant immunity tests and CE marking. Having a built-in CDN for single-phase EUT up to 300 V and max. 16 A. It can be extended for testing three-phase EUTs by means of an automatically controlled external coupling network up to 690 V with max. 100 A.

EMTEST supplies a large range of accessories for the various applications.

Concept

🛲 🤰 🛌 🍾 🏠 ሞ

Automotive Telecom

TECHNICAL DATA (OVERVIEW) **TECHNICAL DATA** EFT as per IEC 61000-4-4, ed. 2 Open-circuit 200 V - 5,500 V Rise time tr Pulse duration td Source impedance Polarity Surge as per IEC 61000-4-5

Polarity

Telecom surge as per IEC 61000-4-5 Open-circuit 10/700 µs

Short-circuit current 4/300 μs

5 ns 50 ns Zq = 50 Ω Positive/negative Open-circuit voltage 1.2/50 µs 250 V - 7.000 V Short-circuit current 8/20 µs 125 A - 3,500 A Positive/negative/alternate Mag. field as per IEC 61000-4-9 100, 300, 1,000 A/m Dips as per IEC 61000-4-11 AC voltage/current Max. 300 V/16 A Inrush current More than 500 A Mag. field as per IEC 61000-4-8 1, 3, 10 and 30 A/m with MC 2630 100, 300 and 1,000 A/m with MC26100 Ring wave as per IEC 61000-4-12 Open-circuit voltage 0.5 µs/100 kHz 6,000 V with 12 Ω and 30 Ω source impedance

> 250 V - 7,000 V 6 A – 175 A

UCS 500N4

Compact tester for EFT/burst, surge and power fail

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11. IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, EN 55024, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45, EN 300329

UCS 500N7

Compact tester for EFT/burst, surge, ring wave and power fail

Tocting h		V FFT 8.7	W cura
			KV SUIS

IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-11, IEC 61000-4-12, IEC 61000-4-29, EN 61000-6-1, EN 61000-6-2, ITU-T K.20, ITU-T K.21, ITU-T K.45, Bellcore GR-1089-Core, ANSI/IEEE C62.41, EN 61543,

EFT as per IEC 61000-4-4, ed. 2				
Open-circuit	200 V - 4,400 V			
Rise time tr	5 ns			
Pulse duration td	50 ns			
Source impedance	Zq = 50 Ω			
Polarity	Positive/negative			
Surge as per IEC 61000-4-5				
Open-circuit voltage 1.2/50 µs	160 V – 4,000 V			
Short-circuit current 8/20 µs	80 A – 2,000 A			
Polarity	Positive/negative/alternate			
Mag. field as per IEC 61000-4-9	100, 300, 1,000 A/m			
Dips as per IEC 61000-4-11				
AC voltage/current	Max. 250 V/16 A			
Inrush current	More than 500 A			
Mag. field as per IEC 61000-4-8	1, 3, 10 and 30 A/m with MC 2630			
	100, 300 and 1,000 A/m with MC26100			
Telecom surge as per IEC 61000-4-5				
Open-circuit 10/700 µs	160 V – 4,000 V			
Short-circuit current 4/300 µs	4 A – 100 A			

TRANSIENTS

Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high-voltage or current transients. Another source of surge pulses are switching transients originating from switching disturbances and system faults. Due to the characteristic of the phenomenon nearly every electrical and electronic device may suffer from such lightning events. Surge tests should therefore be widely performed. Surge voltage can reach several thousands of volts and surge current is seen to reach several thousands of amps.

🔰 📥 🔥 👘 🛲

VCS 500N4

Surge tester 4.4 kV

> Preprogrammed standard test routines included

> Built-in single-phase CDN

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

VCS 500N8 Surge tester 8 kV

ጋ 🖬 🌠 🙆 🖤 🛲

> Testing beyon	the limits, 8 kV/4	4 kA, IEC 61000-4-5/-	9
-----------------	--------------------	-----------------------	---

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL DATA (OVERVIE	ew) 🔽 🔽
Surge as per IEC 61000-4-5	
Open-circuit voltage	250 V – 8,000 V
Wave shape	
Rise time tr	1.0 μs
Pulse duration	50 μs
Short-circuit current	125 A – 4,000 A
Wave shape	
Rise time tr	6.4 µs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	$L - N$ with $Z = 2 \Omega$
	L-PE, N-PE, L+N-PE; Z = 12 Ω

TECHNICAL DATA (OVERVIEW)

Surge as per IEC 61000-4-5	
Open-circuit voltage	160 V – 4,400 V
Wave shape	
Rise time tr	1.0 µs
Pulse duration	50 µs
Short-circuit current	80 A – 2,200 A
Wave shape	
Rise time tr	6.4 µs
Pulse duration	16 µs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	$L - N$ with $Z = 2 \Omega$
	L-PE, N-PE, L+N-PE; Z = 12 Ω

Concept

🤰 🖬 🌠 💼 🖤 🛲

VCS 500N10

Surge tester 10 kV

Still compact in size but up to 10 kV/5 kA, IEC 61000-4-5/-9 Manual & remote operation

> External CDNs for power mains and I/O line applications

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

2 ➡ ★ ▲ ♥ VCS 500N12 Surge tester 12 kV

> Still compact in size but up to 12 kV/6 kA, IEC 61000-4-5/-9

Manual & remote operation

> External CDNs for power mains and I/O line applications

IEC 61000-4-5, IEC 61000-4-9, EN 300329, EN 300340, EN 300342-1, EN 300386 V1.3.2, EN 300386-2, EN 301489-1, EN 301489-7, EN 301489-17, EN 301489-24, EN 55024, ITU-T K.20, ITU-T K.21, ITU-T K.41, ITU-T K.45

TECHNICAL	DATA	(OVERVIEW)	
		(

Surge as per IEC 61000-4-5	
Open-circuit voltage	250 V – 10,000 V
Wave shape	
Rise time tr	1.0 µs
Pulse duration	50 μs
Short-circuit current	125 A – 5,000 A
Wave shape	
Rise time tr	6.4 μs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	External option

TECHNICAL DATA (OVERVIE	w) 🔽 📐
Surge as per IEC 61000-4-5	
Open-circuit voltage	500 V – 12,000 V
Wave shape	
Rise time tr	1.0 μs
Pulse duration	50 µs
Short-circuit current	250 A – 6,000 A
Wave shape	
Rise time tr	6.4 µs
Pulse duration	16 μs
Polarity	Positive/negative/alternate
Output direct	HV-banana connector
Coupling network	External option

TRANSIENTS

Telecommunication networks are exposed to lightning events. Therefore telecommunication equipment that is connected to the outside world needs to have appropriate protection that demonstrates an acceptable level of immunity to surge transients in order not to fail during lightning events. Telecom surge simulators of the TSS 500 series are used to test the immunity of telecommunication equipment.

Duration td

Front time tf

Duration td

Rise time tr

Duration td

Surge B as per FCC part 68

Wave shape short-circuit current

Wave shape open-circuit

300 µs

9 µs

5 µs

320 µs

720 µs

4 – 100 A

Coupling network Telecom surge Front time Pulse duration Short-circuit current Rise time tr Pulse duration

1,0 μs 50 μs 125 A - 3,500 A 6.4 μs 16 μs Positive/negative/alternate HV-banana connector L - N with Z = 2 Ω L-PE, N-PE, L+N-PE; Z = 12 Ω 250 V - 7,000 V 10 μs 700 μs 6.0 - 175 A 4 μs 300 μs

44

TSS 500M10

Telecom surge tester 10 kV

ITU-T K.28, ITU-T K.45

Open-circuit voltage

Front time tf

Duration td

Rise time tr

Duration td

Wave shape short-circuit current

TECHNICAL DATA (OVERVIEW)

> All 10/360 μs, 10/1,000 μs and 2/10 μs included > Built-in resistive coupling network

Bellcore GR-1089-Core, ITU-T K.12, ITU-T K.28, ITU-T K.45

Residential
Medical
Industry

Company

Concept

Automotive

Telecom

Broadcast

) 🛲

Telecom surge as per ITU K	
Wave shape	
Front time tf	1.2 μs
Duration td	50 µs
Wave shape open-circuit	
Front time tf	10 µs
Duration td	700 µs
Wave shape short-circuit current	12.5 – 250 A
Rise time tr	4 µs
Duration td	300 µs
Surge B as per FCC part 68	
Wave shape open-circuit	

9 µs

5 µs

320 µs

720 µs

12.5 – 250 A

500 V - 10,000 V

> Built-in coupling network; 4 × 100 Ω and 2 × 25 Ω

FCC 97-270 (part 68), IEC 61000-4-5, ITU-T K.17, ITU-T K.20, ITU-T K.21,

First-level lightning Pulse 10/1,000 μ s with 6 Ω Rise time tr/Pulse duration td Pulse 10/360 μs with 10 Ω Rise time tr/Pulse duration td Pulse 10/1,000 μ s with 10 Ω Rise time tr/Pulse duration td Pulse 2/10 μ s with 5 Ω Rise time tr/Pulse duration td Pulse 10/360 μ s with 40 Ω Rise time tr/Pulse duration td

Intra-building lightning Pulse 2/10 μs with 8 Ω Rise time tr/Pulse duration td Pulse 2/10 μs with 15 Ω > 2,500 V & 167 A per conductor Rise time tr/Pulse duration td < 2 μs/> 10 μs Second-level lightning > 5,000 V & 500 A per conductor Pulse 2/10 μs with 10 Ω Rise time tr/Pulse duration td < 2 μs/> 10 μs DUT supply 60 V/50 A 1 µs – 10 µs

> 1,000 V & 167 A per conductor
< 10 μs/> 1,000 μs
> 1,000 V & 100 A per conductor
< 10 μs/> 360 μs
> 1,000 V & 100 A per conductor
< 10 μs/> 1,000 μs
> 2,500 V & 500 A per conductor
< 2 μs/> 10 μs
> 1,000 V & 25 A per conductor
< 10 μs/> 360 μs
> 2,500 V & 312 A per conductor
< 2 μs/> 10 μs
> 2 500 V & 167 A per conductor

TRANSIENTS

The OCS 500M6 includes test capabilities for ring waves up to 6 kV and damped oscillatory waves at 100 kHz and 1 MHz up to 2.5 kV. A ring wave is a non-repetitive damped oscillatory transient occurring in low-voltage power, control and signal lines supplied by public and non-public networks. Damped oscillatory waves are repetitive transients mainly occurring in power, control and signal cables installed in high-voltage and medium-voltage stations. The OCS 500M6 can also be used to perform magnetic field tests as required in IEC 61000-4-10 using a magnetic field coil such as the MS 100.

Compact tester for ring wave and damped oscillatory waves

> 100 kHz ring wave & 100 kHz/1 MHz damped Oscillatory

› Conducted immunity and magnetic field test

> Built-in coupling network

OCS 500M6

ANSI/IEEE C37.90, ANSI/IEEE C62.41, IEC 60255-1, IEC 61000-4-10, IEC 61000-4-12, IEC 61000-4-18

TECHNICAL DATA (OVERVIEW)	∽ ∽ .⊂ ∿
Damped oscillatory as per IEC 61000-4-18	
Output voltage open-circuit	250 V – 2,500 V
Rise time/Oscillation frequency 1/T	75 ns/100 kHz and 1 MHz
Decaying	Peak 5 must be > 50% of peak 1 value
	Peak 10 must be < 50% of peak 1 value
Source impedance	200 Ω
Polarity	Positive/negative
Repetition rate	40/s for 100 kHz and 400/s for 1 MHz
Direct output at the front panel	For ext CDN & magn. field antenna
Coupling network	1-phase or 3-phase
Damped oscillatory magnetic field	
as per IEC 61000-4-10	MS 100 (square 1 m × 1 m) antenna
Ring wave as per IEC 61000-4-12	
Output voltage open-circuit	250 V – 6,000 V
Rise time first peak T1/Oscillation frequency	0.5 μs/100 kHz
Decaying of Pk1 to Pk2	40% - 110%
Decaying of Pk2 to Pk3 & decaying of Pk3 to Pk4	40% - 80%
Output impedance	12 Ω , 30 Ω (200 Ω external)
Wave shape short-circuit	
Rise time first peak tr T1	< 1 µs
Oscillation frequency 1/T	100 kHz

CURRENT SURGE

Surge pulses occur due to direct or indirect lightning strikes to an external (outdoor) circuit. This leads to currents or electromagnetic fields causing high-voltage or current transients. Another source of surge pulses are switching transients originating from switching disturbances and systems faults. Due to the characteristic of the phenomenon nearly every electrical and electronic device may suffer from such lightning events. Surge tests should therefore be widely performed also on component level.

Charging voltage100 - 2,500 VShort-circuit current1,200 ARange I1 - 18 ARange II6 - 140 ARange III40 - 1,200 AWave shape20 µSPolarityPositive/negative/alternateOutput directHV test clampEUT test box0Other waveforms on request	
Range I1-18 ARange II6 - 140 ARange III40 - 1,200 AWave shape9Rise time tr8.0 µsPulse duration20 µsPolarityPositive/negative/alternateOutput directHV-connectorHV test clampEUT test box	
Range II6 – 140 ARange III40 – 1,200 AWave shapeRise time tr8.0 µsPulse duration20 µsPolarityPositive/negative/alternateOutput directHV-connectorHV test clampEUT test box	
Range III 40 – 1,200 Å Wave shape 8.0 μs Rise time tr 8.0 μs Pulse duration 20 μs Polarity Positive/negative/alternate Output direct HV-connector HV test clamp EUT test box	
Wave shape Rise time tr 8.0 µs Pulse duration 20 µs Polarity Positive/negative/alternate Output direct HV-connector HV test clamp EUT test box	
Rise time tr 8.0 µs Pulse duration 20 µs Polarity Positive/negative/alternate Output direct HV-connector HV test clamp EUT test box	
Pulse duration 20 µs Polarity Positive/negative/alternate Output direct HV-connector HV test clamp EUT test box	
Polarity Positive/negative/alternate Output direct HV-connector HV test clamp EUT test box	
Output direct HV-connector HV test clamp EUT test box	
HV test clamp EUT test box	
EUT test box	
Other waveforms on request	
Other waveforms on request	

N)	
250 – 6,000 V	
10,000 A	
8.0 μs	
20 µs	
Positive/negative/alternate	
HV-banana connector	
EUT test box	
Other waveforms on request	
	250 – 6,000 V 10,000 A 8.0 μs 20 μs Positive/negative/alternate HV-banana connector EUT test box

Company

Concept

Automotive

Telecom

Industry | Medical | Residential | Broadcast

Military | Aircraft

Accessories

SAFETY

The voltage surge simulator VSS 500N12 generates high-voltage transients as required by several IEC standards. The voltage surge pulses are used to test the isolation (voltage withstand) capability of components, sockets, connectors, cables and many other items.

As per safety test requirements the insulation between accessible parts or parts connected to them and hazardous live parts must be able to withstand surges due to transients caused, e.g. by thunderstorms and entering the apparatus through the antenna terminal. The voltage surge simulator VSS 500N10 generates high-voltage transients as required by IEC 60065 and UL 6500 standards for safety tests on audio, video and similar electronic apparatus.

-

Testing equipment safety up to 12 kV
 Internal 40 Ω or 500 Ω resistor for current limiting

> Manual & remote operation

IEC 60060, IEC 384-14, IEC 664

VSS 500N12

Voltage surge simulation

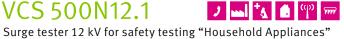
IEC 60065, UL 6500

VSS 500N10

Voltage surge simulation

-

TECHNICAL DATA (OVERVIEW)		ΜN
Open-circuit voltage	500 V – 12,000 V	
Rise time tr	1.2 µs	
Pulse duration	50 µs	
Internal resistor	Options are 40 Ω or 500 Ω	
Polarity	Positive/negative/alternate	


TECHNICAL DATA (OVERVIEW)	MN
Open-circuit voltage	500 V – 10,000 V
Rise time tr	< 100 ns
Pulse duration	> 2 ms
Internal resistor	1,000 Ω
Polarity	Positive

VSS 500N6

Surge tester 6 kV for safety testing of "Protection Relays"

V

› Compact in size

› Constant energy

> Manual & remote operation

IEC 60255-5

Surge as per IEC 60255-5	
Open-circuit voltage	150 V – 6,600 V
Wave shape	
Rise time tr	1.2 µs
Pulse duration	50 μs
Internal impedance	500 Ω
Energy	0.5 J at each test level
Test level	0.55 kV – 0.9 kV – 3.0 kV – 5.0 kV – 6.6 kV
Polarity	Positive/negative/alternate
Output direct	HV-banana connector

TECHNICAL DATA (OVERVIEW)		\mathbb{N}
Surge as per IEC 61000-4-5		
Open-circuit voltage	500 V – 12,000 V	
Wave shape		
Rise time tr	1.0 µs	
Pulse duration	50 µs	
Short-circuit current	41.7 A – 1,000 A	
Wave shape		
Rise time tr	6.4 µs	
Pulse duration	16 µs	
Polarity	Positive/negative/alternate	
Output direct	HV-banana connector	
Coupling network	External option	

	Still	compac	t in siz	e but up	to 12	kV/	1 kA
_		1.0					

> Manual & remote operation

> External CDNs for power mains and I/O line applications

IEC 61000-4-5, IEC 60335-1, IEC 61180-1, IEC 61180-2

VERVIEW)	N
-5	
	500 V – 12,000 V
	1.0 μs
	50 µs
	41.7 A – 1,000 A
	6.4 µs
	16 µs
	Positive/negative/alternate

AIRCRAFT MILITARY

OVERVIEW				
Application	Conducted Immunity	Radiated Immunity	Electrostatic Discharge	Power Mains Supply Simu- lation
Products	CWS 500N3	CWS 500N3	dito	AutoWave
	CWS 500N2	CWS 500N2	ESD 30N	VDS 200Nx
Standards	MIL STD 461	MIL STD 461	MIL STD 461	DO 160
	DO 160	DO 160	DO 160	Section 16

BATTERY SIMULATION

The VDS 200N series is used to simulate the various battery supply waveforms recommended by the DO 160 aircraft standard and associated manufacturer standards.

The VDS 200N series has normally a nominal DC voltage output of 60 V. To cover the max test level required in DO 160 the generators can be extended to a 80 V nominal output voltage. AutoWave is used for the following applications:

- > Generation of all kinds of voltage profile via software
- > Replay of imported data or plot files, record & play
- > Recording voltage variations in the real vehicle
- Replaying the measured data via a suitable DC source or amplifier
- > Analysis of the recorded voltages and currents
- > Export of measured data to other software tools

VDS 200N

Battery supply simulator and DC voltage source

Stand-alone, programmable DC source
Manual & remote operation
60 V – 80 V/15 A – 200 A

DO 160

TECHNICAL DATA (OVERVIE	w) 🗽 🚾 🔽
Voltage range	0 V – 60 V with 0.1 V steps
VDS 200N15	I = 0 A – 15 A cont.
VDS 200N30	I = 0 A - 30 A cont.
Inrush current	l = 70 A for 500 ms
VDS 200N30.2	80 V/30 A/70 peak
VDS 200N50	I = 0 A – 50 A cont.
Inrush current	l = 100 A for 500 ms
VDS 200N100	I = 0 A – 100 A cont.
Inrush current	l = 150 A for 500 ms
VDS 200N150	I = 0 A – 150 A cont.
VDS 200N200	I = 0 A – 200 A cont.
VDS 200N200.1	I = 0 A – 200 A cont.
Inrush current	l = 1,000 A for 100 ms
Preprogrammed wave shapes	as per section 16 of DO 160
$Zq = \langle 10 m\Omega \rangle$	

Signal generator and recorder

AUTOWAVE

Simulating + measuring + analysing

> 16 bit resolution, 40 GByte hard disk memory

Simultaneous record & play function

DO 160 section 16 requirements

±5 V, 10 V, 20 V, 50 V, 100 V

TECHNICAL DATA (OVERVIEW)	v v v v
Wave generation	
2 output channels standard	
4 output channel optional	
Output ±10 V/50 Ω	
Resolution 16 bit	
DC – 50 kHz	
Sample rate 500 kHz	
Waveform segments	
DC voltage	
Sine wave	
Sine wave sweep	
Sine ramped	
Square wave	
Triangular wave	
Saw-tooth wave	
Ramp up/Ramp down	
Exponential wave	
Wave record	
2-channel measuring input	

Automotive

Accessories

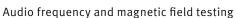
CONDUCTED AND **RADIATED IMMUNITY**

Bulk Current Injection (BCI) is a test procedure to test immunity to electrical disturbances caused by narrowband electromagnetic energy. The test signal is injected by means of a current injection probe. In physical terms the current injection probe is a current transformer laid around the wiring harness. Immunity tests are performed varying the level and the frequency of the injected test signal. The BCI test method is widely known in the automotive industry as well as in the military/aircraft industry to test single components of a complex system.

The CWS 500N3 is a state-of-the-art solution in a compact one-box design to test immunity to conducted audio frequency disturbances and low-frequency magnetic fields. The CWS 500N3 includes signal generator, LF amplifier, coupling transformer, frequency selective current and voltage monitor, software and GPIB interface.

ICD software supports the test routines, controls external measuring devices and automatically generates test reports with all test data included.

CWS 500N2



Bulk Current Injection (BCI) testing

IEC 61000-4-6, EN 61000-6-1, EN 61000-6-2, IEC 60601-1-2:2002, ISO 11452-4, ISO 11452-5. DaimlerChrysler DC-10614. Ford ES-XW7T-1A278-AB. Ford ESXW7T-1A278-AC, GMW 3097 (2001), GMW 3097 (2004), MBN 10284-2:2002, PSA B21 7110, Renault 36.00.808/-D, Renault 36.00.808/-G, MIL STD 461D/CS 114, MIL STD 461E/CS 114, RTCA/DO 160 Section 20,

TECHNICAL DATA (OVERVIE)	N)	$\sim NN M$
BCI method	MIL 461B CS114	
Output power	100 W (nominal)	
Output impedance	50 Ω	
Max. VSWR	1:2.0	
Output level	-13 dBm – 50 dBm	
Sinusoidal (CW)	10 kHz – 1,000 MHz	
Modulation	AM 1 – 3,000 Hz, 0 – 95%	
	PM 1 – 3,000 Hz	
	Duty cycle 10% – 80%	
Output	N-connector	
Built-in power meter	Channel 1 forward power	
	Channel 2 reverse power	
	Channel 3 injected current	
Built-in coupler	Max 200 W/1 GHz	
Test method	Closed loop	

📾 🖊 📥 🚊 CWS 500N3

ISO 11452-10, vehicle manufacturer specifications, SAE J1113, MIL-STD 461

TECHNICAL DATA (OVERVIEW)

MN M

al 🤈 🤞 🛐

Conducted immunity	ISO 11452-10
Output level	0.001 V – max. 6.5 Vrms
Output current	Max. 14 A
Frequency range	10 Hz to 250 kHz
Output power nominal	100 W
Output power peak	400 W
Output impedance	< 0.5 Ω
Harmonic distortion	< 15 dBc at max. power
Coupling	Audio transformer included
Measurements	Freq. selective volt/amp meter
Verification load	0.5 Ω & 4 Ω included
Radiated immunity	ISO 11452-8
Magnetic field	Max. 1,000 A/m up to 1 kHz
Frequency range	15 Hz to 150 kHz
Radiating loop	As per MIL 461E
Magnetic field sensor	As per ISO 11452-8
Current sensor	Included

ELECTROSTATIC DISCHARGE

Specification contact discharge

Peak of discharge currents

Rise time tr

500 V to 10 kV

0.7 – 1 ns

3.75 A/kV

Electrostatic discharges either from a human body to any other part or between two different objects can cause persistent disturbances or even destruction to sensitive electronics or controls. Voltages of several thousand volts are generated. dito is the most advanced ESD tester to simulate ESD pulses as accurately as possible according to the latest standards.

- esd.control software

- Power supply: AC (88 - 250 V), DC (11 - 16 V)

- Battery mode included for several hours

O ACCESSORIES

CNI 501/503

Combined coupling/decoupling networks for burst and surge CNI 501/CNI 503

› Connection to: UCS 500Nx, EFT 500Nx, VCS 500Nx

The coupling network is the central connection point in a fully automatic test set-up. With coupling network type CNI 503, burst and surge pulses as well as voltage dips and voltage variations are coupled onto the selected supply lines.

CNV 501/503

Coupling/decoupling networks CNV 501/CNV 503 for surge

The coupling network is the central connection point in a fully automatic test set-up. With coupling network type CNV 503, surge pulses are coupled onto the selected supply lines.

CNV 504N/CNV 504S1/ CNV 508N/CNV 508S1

Coupling/decoupling networks series CNV 504N/CNV 504S1/ CNV 508N/CNV 508S1

Connection to: UCS 500Nx, VCS 500Nx

The coupling networks in series CNV 504/508 are used to superimpose the surge pulse onto signal and data lines as well as onto telecommunication lines.

MV26XX

Motor variac type MV26xx for tests according to IEC/EN 61000-4-11

> Connection to: UCS 500Mx, PFS 503Sx

The motor variac is used for adjusting the required dip voltage and voltage variation continuously.

MV3P40XXDS

3-phase motor variac for Delta-Star tests. For tests according to IEC/EN 61000-4-11 and IEC/EN 61000-4-34

Tap-off transformer type V4780 for tests according to IEC/EN 61000-4-11

Connection to: PFS 503Sx

The motor variac is used for adjusting the required dip voltage and voltage variation continuously. For 3-phase applications the variac can be used for STAR and DELTA systems as well.

> Connection to: UCS 500M

The V4780 is a tap-off transformer to achieve the fixed 40%, 70% and 80% dip levels. This unit is also available as a remote-controlled model V4780S2.

HFK

Coupling clamp according to IEC/EN 61000-4-4

CAEFT

Calibration set acc. to IEC/EN 61000-4-4, ed. 2

> Connection to: UCS 500Nx, EFT 500Nx

The capacitive coupling clamp is used to couple the burst pulses onto control and data lines.

> Connection to: UCS 200N, UCS 500Nx, EFT 500Nx

The pulse shape of EFT/burst generators designed as per IEC 61000-4-4 have to be verified at 50 Ω as well at 1,000 Ω load. Both matching resistors additionally include a voltage divider to measure the wave form.

Concept

MS 100

Magnetic field test antenna according to IEC 61000-4-8/-9 and EN 61000-4-8/-9

> Connection to: UCS 500Nx, PFS 503Sx, VCS 500Nx OCS 500M

Type MS 100:

- > 30 A/m continuous,
- > 1,000 A/m short term
- > Pulsed up to 2,200 A/m

MV2606N2.1

Motor variac for tests according to IEC/EN 61000-4-16 – galvanically isolated

Connection to: CWS 500N

The motor variac is specifically designed for conducted low-frequency tests according IEC/EN 61000-4-16. Supports tests at present supply frequency.

CDN T2-16/CN L2/L4-16

ACS 500N2.1

Single-phase AC voltage source 2 kVA for tests according to IEC/EN 61000-4-16 – galvanically isolated

Connection to: CWS 500N4

ACS 500N2.1 is an electronic AC source, specifically designed for conducted low-frequency tests according IEC/EN 61000-4-16. Supports tests at various supply frequencies.

> Connection to: CWS 500N4

> Coupling/decoupling networks for communication ports and signal/datalines as well as AC/DC power supply lines according to IEC 61000-4-16

ITP, ITP/H

Immunity test probes for pre-compliance tests acc. to IEC 61000-4-3

Connection to: UCS 200N, UCS 500Nx, EFT 500Nx

Generates electrical and magnetic fields. Set includes different test probes.

The test probes can be connected to the above-listed generators for burst application. These test probes allow preliminary testing acc. to IEC 61000-4-3 during development.

> Connection to: UCS 200N, LD 200Nx, LD 200Sx

A different set of resistors is used for the verification of transient generators as per Iso 7637-2. The generator output is measured under matched load conditions which means $R_I = R_L$.

EAS 30 Earth grounding resistor acc. to IEC 61000-4-2

VCP

Vertical coupling plane acc. to IEC 61000-4-2

> Connection to: ESD 30N, dito

To discharge the horizontal and vertical coupling plane to the reference ground plane. The EAS 30 is necessary for the test set-up according to the relevant standard.

Connection to: ESD 30N, dite

- > Consisting of a coupling plane and an EAS 30
- > Adapter for contact discharge
- > A 10 cm isolating distance is obtained by a wooden support

CDN Coupling/decoupling networks according IEC 61000-4-6

CTR2

> Connection to: CWS 500N1, CWS 500N2

- > Suitable calibration adapters for all available CDNs
- > Coupling clamp (EM clamp)
- > Current injection
- > T50, 50 Ω termination resistor
- > R-100, 100 Ω matching resistor

Connection to: ESD 30N, dite

The CTR2 is a coaxial current target designed to monitor electro-static discharges as required in IEC 61000-4-2.

CTR2-AD

> Connection to: ESD 30N, dito

The CTR2-AD is a conical adapter to connect the CTR2 into a 50 Ω measuring system for verification.

RADIATING LOOP

Radiating loop as per MIL-STD 461 to generate magnetic fields.

Company

Concept

Automotive

Telecom

LOOP SENSOR

ACC

Capacitive coupling clamp according to ISO 7637-3

> Connection to: CWS 500N3

Loop sensor as per MIL 461 to measure magnetic fields.

> Connection to: UCS 2001

The capacitive coupling clamp is used to couple pulses 1, 2 and 3a + 3b onto control and data lines.

RDS 200/RDS 200S1 Ford ES-XW7T CI 230 ...

> Connection to: PFS 200Nx, AutoWave

RDS 200 is a remote-controlled DC voltage source with a built-in current sink and is used to generate battery supply variations. It is controlled via the 0 - 10 V DC analogue signal from the PFS 200N for voltage dips or by an arbitrary generator to generate signals, e.g. as required by Ford's Cl 230 specification.

INJECTION AND MONITORING PROBES

F-130A-1, F-140, F-120-6A, F-120-9A

Connection to: CWS 500N1, CWS 500N2

- > Current injection probes
- > Calibration jigs
- > Matching impedance and termination resistors

COMPETENCE WHEREVER YOU ARE

Contact our agencies worldwide: www.emtest.com
NOTES

OURS IS A THINKING, NOT JUST A MANUFACTURING BUSINESS FOR ADDITIONAL INFORMATION HAVE A LOOK ON WWW.EMTEST.COM!

84

SEMINARS & WORKSHOPS

Our seminars and workshops cater to the demands of users in the fields of research, development and production. They give you the concentrated and comprehensive knowledge that demanding customers desire.

SERVICE & SUPPORT

What is the use of the best EMC equipment if service is missing? Not much, or rather nothing at all. To express it positively: you can recognize a good manufacturer by the quality of after-sales services.

TESTING LABORATORY

Insufficient, incorrect or obsolete EMC tests and faulty documentation can have expensive consequences. For this reason, the various testing laboratories and measuring sites of EMTEST are always a decisive step ahead of current technology.

CALIBRATION LABORATORIES

Naturally, our engineers calibrate not only our own appliances according to relevant standards, but also those of other manufacturers.

OUR SOFTWARE INTELLIGENCE IS A HUMAN CHARACTERISTIC. ACTUALLY.

) ise camizel write Modeo Geräte Pulse Puriti	ann Dalaim Edua Ma			- # ×	
Medes	Carl Carles Coole 210			∧ emtest	and the second se
🖉 nach Normen	📥 nach Gesäten			venitest	
Geräte					
L02008					
Polos Polo 5 Polo 5 Polo 5 Disped 7 Field Decay	Puix 5 MBN 12V Puix 5 MBN 22V Puix 5 MBN 22V Puix 5 MBN 42V	Pais Nissan At Pais Nissan A2 Pais Nissan B1		COM CO	MPLETELY MPATIBLE NITH MS- VISTATM
Pull SAE 12V	N Puis 5 Feed - AB	Nats 5 Scenia Bas			VISTA
N Puls SAE 24V	N Puis 5 Feed - AC	Puls 5 Scania Truck			
New Jaco Al	💽 Pula 5 Chrysler				
Puls Jaso B1	Puis 5 Chrys. Clip.				and the second se
Carples #	🖥 Link-Generator 📃 Presstyle			simulation	
Offee Test-Date	B Office Lines-Datasi 🛛 📄 Office Region Publicacionali	et-Data i	LD200M Gerationed	de un	
Offer Test Date		rs Datei	LECODH Gurmons	*	

- > Standard library updated continuously
- > 100% compatible with Windows Vista®
- > Involvement of measuring devices
- > User-friendly interface
- > Individual configuration of tests
- > Automation of test sequences
- Comprehensive reporting to match user requirements

Only software experts with wide-ranging experience who understand the day-to-day work of our customers are able to think of everything. They know the exact requirements of our customers. They listen actively and develop together with our customers complete EMTEST software solutions that conform to the latest relevant standards. Outstanding customizability and innovation characterize our software, which is guaranteed to help achieve optimum performance.

esd.control

test plan to test report completely reproducible

iec.control

the standard for industrial, medical and telecommunication testing

autowave.control

battery simulation for maximum demand

icd.control

the universal solution for sinusoidal quantity

iso.control

the standard for automotive testing

evaluation and

analysis, all in one

EM TEST Service:

Company

Automotive

Telecom

Broadcast

Medical | Residential |

ndustry

Components

Aircraft

Military

Accessories

Windows Vista® is either a registered trade mark or a brand of the Microsoft® Corporatior in the USA and/or other countries.

EM TEST EQUIPMENT: THE INTELLIGENT AND EASY WAY OF TESTING

WE SET IMPORTANT STANDARDS IN THE DEVELOPMENT OF EMC TEST EQUIPMENT.

Information about scope of delivery, visual design and technical data correspond with the state of development at time of printing. Technical data subject to change without further notice.

Copyright by EMTEST 2008.

LEARN MORE: www.emtest.com

Switzerland

France

Malaysia EM TEST (M) SDN BHD > Unit B2-6, Jalan Dataran SD2 > Dataran SD2, PJU9 > Bandar Sri Damansara > 52200 Kuala Lumpur > Malaysia